
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

JXTA

Contents at a Glance
I The Basics of JXTA

1 Introduction 3

2 P2P Concepts 15

3 Introducing JXTA P2P Solutions 39

II JXTA Protocols

4 The Peer Discovery Protocol 83

5 The Peer Resolver Protocol 125

6 The Rendezvous Protocol 161

7 The Peer Information Protocol 177

8 The Pipe Binding Protocol 201

9 The Endpoint Routing Protocol 251

10 Peer Groups and Services 285

III Putting It All Together

11 A Complete Sample Application 347

12 The Future of JXTA 447

IV Appendixes

A Glossary 461

B Online Resources 467

Index 473

00_2344 FMjxta 5/15/02 9:38 AM Page i

00_2344 FMjxta 5/15/02 9:38 AM Page ii

JXTA

201 West 103rd Street, Indianapolis, Indiana 46290
An Imprint of Pearson Education
Boston • Indianapolis • London • Munich • New York • San Francisco

Brendon J. Wilson

www.newriders.com

00_2344 FMjxta 5/15/02 9:38 AM Page iii

Publisher
David Dwyer

Associate Publisher
Stephanie Wall

Production Manager
Gina Kanouse

Managing Editor
Kristy Knoop

Development Editor
Rubi Olis

Project Editor
Stacia Mellinger

Product Marketing
Manager
Kathy Malmloff

Publicity Manager
Susan Nixon

Copy Editor
Krista Hansing

Indexer
Cheryl Lenser

Manufacturing
Coordinator
Jim Conway

Book Designer
Louisa Klucznik

Cover Designer
Brainstorm Design, Inc.

Cover Designer
Aren Howell

Proofreader
Debbie Williams

Composition
Jeff Bredensteiner

JXTA
Copyright 2002 by New Riders Publishing

FIRST EDITION: June, 2002

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written
permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 0-73571-234-4

Library of Congress Catalog Card Number: 2001096748

06 05 04 03 02 7 6 5 4 3 2 1

Interpretation of the printing code:The rightmost double-
digit number is the year of the book’s printing; the right-
most single-digit number is the number of the book’s
printing. For example, the printing code 02-1 shows that
the first printing of the book occurred in 2002.

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capital-
ized. New Riders Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service
mark.

Java is a registered trademark of Sun Microsystems.

Warning and Disclaimer
This book is designed to provide information about JXTA.
Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is
implied.

The information is provided on an as-is basis.The authors
and New Riders Publishing shall have neither liability nor
responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this
book or from the use of the discs or programs that may
accompany it.

00_2344 FMjxta 5/15/02 9:38 AM Page iv

❖

To alcohol! The cause of, and solution to, all of life’s
problems…oh, yeah, and my wife,Ashley, and parents,

Mae and Rod.
❖

00_2344 FMjxta 5/15/02 9:38 AM Page v

Table of Contents

I The Basics of JXTA

1 Introduction 3
Introduction to Peer-to-Peer 3
Why Is Peer-to-Peer Important? 7
A Brief History of P2P 8
Introducing Project JXTA 12
Summary 14

2 P2P Concepts 15
Elements of P2P Networks 15
P2P Communication 22
Comparisons to Existing P2P
Solutions 36
Summary 37

3 Introducing JXTA P2P
Solutions 39
Core JXTA Design Principles 40
Introducing the JXTA Shell 48
Running the JXTA Shell 52
Navigating the JXTA Shell 61
Manipulating Peers 66
Manipulating Peer Groups 69
Manipulating Pipes 73
Talking to Other Peers 75
Extending the Shell Functionality 76
Summary 80

00_2344 FMjxta 5/15/02 9:38 AM Page vi

II JXTA Protocols

4 The Peer Discovery Protocol 83
Introducing the Peer Discovery Protocol 83
The Discovery Service 93
Working with Advertisements 118
Summary 124

5 The Peer Resolver Protocol 125
Introducing the Peer Resolver Protocol 126
The Resolver Service 131
Summary 159

6 The Rendezvous Protocol 161
Introducing the Rendezvous Protocol 162
The Rendezvous Service 168
Summary 176

7 The Peer Information Protocol 177
Introducing the Peer Information Protocol 177
The Peer Info Service 183
Summary 199

8 The Pipe Binding Protocol 201
Introducing the Pipe Binding Protocol 202
The Pipe Service 207
Summary 249

9 The Endpoint Routing Protocol 251
Introduction to Endpoints 252
Using the Endpoint Service 258
Introducing the Endpoint Routing Protocol 278
The Endpoint Router Transport Protocol 283
Summary 284

10 Peer Groups and Services 285
Modules, Services, and Applications 286
The Peer Group Lifecycle 294
Working with Peer Groups 300
Creating a Service 309
Summary 344

viiContents

00_2344 FMjxta 5/15/02 9:38 AM Page vii

III Putting It All Together

11 A Complete Sample Application 347
Creating the Presence Service 348
Creating the Chat Service 374
The JXTA Messenger Application 403
Summary 444

13 The Future of JXTA 447
Future Directions for Project JXTA 447
Participating in Project JXTA 453
Working with the Java Reference Implementation
Source Code 456
Summary 458

IV Appendixes

A Glossary 461

B Online Resources 467
P2P Companies and Organizations 467
P2P Magazines 469
Project JXTA Resources 470
Internet Standards and Standards Bodies 471

Index 473

viii Contents

00_2344 FMjxta 5/15/02 9:38 AM Page viii

ix

About the Technical Reviewers
These reviewers contributed their considerable hands-on expertise to the entire
development process for JXTA.As the book was being written, these dedicated
professionals reviewed all the material for technical content, organization, and flow.
Their feedback was critical to ensuring that JXTA fits our readers’ need for the
highest-quality technical information.

William R. Bauer retired from the defense industry in 1997 to
help his talented and gorgeous wife raise their newborn son. He
currently has a small consulting practice catering primarily to
medical research. He had a diverse 30-year career in defense as a
software, hardware, and algorithm designer. His techniques for
measuring Dingle temperatures in solid-state physics and for real-
time measurement of pitch in voice processing are still in use.

Bill (a.k.a.Vasha) joined the JXTA project shortly after it became open-source. He
co-owns the JXTA-Wire and JXTA-httpd projects, and has learned a great deal from
the originator of those projects, Eric Pouyoul. Presently Bill is developing transports
and services optimized for JXTA’s Voice Over P2P (vop2p) project.

About the Author
Brendon J.Wilson, a graduate of Simon Fraser University’s
Engineering Science program (www.ensc.sfu.ca), is a software engineer
specializing in object-oriented programming with a focus on
Java and Internet technologies. Brendon started using Java in 1996
as part of his undergraduate thesis project, a 3D robot manipulator simu-
lator, which went on to win Sun Microsystems’ Java3D
programming competition.

Since graduating from SFU, Brendon has worked at a number of
high-tech software-development companies, including the e-business

division of IBM’s Pacific Development Center in Burnaby, and a variety of
encryption and wireless startups around the world. Currently a Senior Software
Engineer at PKI Innovations, Inc. (www.pk3i.com), Brendon divides his time
between his job, his pursuit of his PEng (professional engineer) designation, and
investigations into all the latest Internet technologies. Occasionally he sleeps, too.

Brendon lives with his wife,Ashley, in Vancouver, Canada, where he is currently
recovering from an all-consuming addiction to The Simpsons. He can be contacted
through his web site at www.brendonwilson.com.

Ph
ot

o:
Jo

hn
 H

ar
ve

y
(w

w
w

.jo
hn

ha
rv

ey
ph

ot
o.

co
m

)

00_2344 FMjxta 5/15/02 9:38 AM Page ix

x

Chris Genly has more than 25 years of software engineering
experience in diverse subjects such as natural language processing,
compilers, and distributed computing. Current interests include
Java, P2P, and eXtreme Programming. Chris lives in the idyllic
town of Forest Grove, Oregon, with his wife and two children.

00_2344 FMjxta 5/15/02 9:38 AM Page x

xi

Acknowledgments
First, I’d like to thank Sun Microsystems and the Project JXTA development team for
creating the JXTA technology and releasing it to the JXTA Community.

Second, I’d like to thank all the members of the JXTA Community and JXTA
mailing lists for providing me with invaluable constructive criticism on early drafts of
the book.This feedback allowed me to tune the book and catch numerous errors early
in its development. More important, the community provided me with encourage-
ment when I needed it most.

Third, I’d like to thank all of those involved in the production of this book. In par-
ticular, I’d like to recognize Jeff Riley (I owe my life to him), Stephanie Wall, Rubi
Olis, Elise Walter, and Lisa Thibault at New Riders. I’d also like to thank New Riders
for not only giving me the opportunity to write this book, but also having the fore-
sight to allow me to release early drafts to the JXTA Community for review.At a time
when many companies are greedily hoarding intellectual property, it is encouraging to
see that a company like New Riders can recognize the benefit that it can realize from
contributing freely to an online community.

Fourth, I’d also like to thank my two phenomenal technical editors,William Bauer
and Chris Genly, for their insightful comments and flattering remarks.Without them,
this book wouldn’t have been half as useful as it is. John Harvey deserves a mountain
of credit for somehow making me look intelligent for the book’s photo, despite losing
several lenses in the process.

Fifth, I’d like to thank Mr. Paul Knipe, Mr. Mark Van Camp, Mr. Rod Osiowy, Dr.
John Dill, Dr.Ash Parameswaran, and the many other teachers I’ve had throughout my
secondary and post-secondary education.These are the people who encouraged me to
make the most of myself and to try new things.The future is in good hands as long as
we have dedicated teachers like these educating our children.

Finally, and most important, I’d like to thank my wife,Ashley; my parents, Mae and
Rod; and all of my friends for their love and support—oh, and for putting up with me
when I start ranting or babbling (my only two forms of “conversation”).

00_2344 FMjxta 5/15/02 9:38 AM Page xi

xii

Tell Us What You Think
As the reader of this book, you are the most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

As the Associate Publisher for New Riders Publishing, I welcome your comments.
You can fax, email, or write me directly to let me know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book
and that, due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and share
them with the author and editors who worked on the book.
Fax: 317-581-4663
Email: stephanie.wall@newriders.com

Mail: Stephanie Wall
Associate Publisher
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00_2344 FMjxta 5/15/02 9:38 AM Page xii

xiii

Preface
The explosion in the number of peer-to-peer (P2P) solutions has underlined
the importance of this technology to the continued growth and development
of the Internet. However, the proprietary and specialized nature of current
solutions highlights the need for a standard set of protocols to address the par-
ticular requirements of the P2P domain.The JXTA platform provides develop-
ers with a flexible, standards-based set of protocols and reference libraries.
Using JXTA, developers can focus on implementing their collaborative appli-
cations rather than on the specifics of P2P
technology.

The JXTA platform is the next stage of development in the maturing P2P
arena, a fundamental shift in the way people use the Internet. Using JXTA,
developers can create new applications that will communicate with any
number of distributed peers, providing distributed search, file sharing, and
collaboration services without relying on the traditional client/server hierar-
chy.The result is more robust and reliable applications that enable users to
fully realize the communication capabilities of the Internet.

What This Book Covers
This book presents a guided tour of the JXTA platform, including all the criti-
cal information required to begin producing P2P solutions built on top of
JXTA. Reference information on each of the JXTA protocols provides an
understanding of the underlying principles of P2P networking, and examples
built on the JXTA reference implementation provide the hands-on experience
necessary to become fluent in JXTA technology.

All examples in the book use the JXTA reference implementation written
in Java, allowing the example code to be run on any device with a Java
Virtual Machine (JVM), thereby reaching the largest possible development
audience. For developers who want to use another development language, the
protocol reference information within the book is comprehensive enough to
allow an advanced developer to produce solutions that are compatible with
JXTA.

Chapter 1,“Introduction,” is a general introduction to the topic of peer-to-
peer (P2P) computing, including the history of the development of the P2P
paradigm, the advantages and disadvantages of P2P, and an introduction to
Project JXTA.

00_2344 FMjxta 5/15/02 9:38 AM Page xiii

xiv

Chapter 2,“P2P Concepts,” introduces the basic concepts of P2P network-
ing, the problems posed by P2P, and the terminology required to understand
the rest of the book.This chapter provides a technical introduction to the
components required to implement a complete P2P network.

Chapter 3,“Introducing JXTA P2P Solutions,” introduces JXTA and the
solutions that it provides to address basic problems in P2P networking. It dis-
cusses the design philosophy, assumptions, capabilities, and limitations of JXTA.
The majority of the chapter is devoted to using the JXTA Shell application, to
familiarize the reader with the JXTA implementation of P2P, and to allow
some preliminary experimentation without requiring the reader to program
anything just yet. In addition, a small introduction on XML familiarizes the
reader with the form of messages used by all the JXTA protocols.

Chapter 4,“The Peer Discovery Protocol,” details the Peer Discovery
Protocol (PDP), which provides JXTA P2P applications with a mechanism for
discovering other peer resources.Without the PDP, a P2P client would be use-
less, incapable of finding and using the resources offered by other peers.The
chapter elaborates on the purpose of the PDP, its use in JXTA applications,
and the format of PDP messages. Examples, using the JXTA Shell and Java
code written using the reference JXTA implementation, guide the reader
through the use of the PDP to discover other peer resources on the network.

Chapter 5,“The Peer Resolver Protocol,” discusses the Peer Resolver
Protocol (PRP), which provides P2P applications with a generic request-and-
response format to use when communicating with other peers.After a peer
has been discovered using the Peer Discovery Protocol, the PRP can be used
to send messages to the peer for processing and to receive messages from the
peer containing the results.This chapter details the purpose of the PRP, the
use of the PRP in JXTA applications, and the format of PRP messages; it also
guides the reader through example code that uses the PRP to send and receive
simple messages between two peers.

Chapter 6,“The Rendezvous Protocol,” details the Rendezvous Protocol
(RVP), used by a peer to connect to a rendezvous peer and have messages
propagated on its behalf to other peers that are also connected to the ren-
dezvous peer. Rendezvous peers provide a mechanism for peers to broadcast
messages to many peers without relying on a specific network transport.This
chapter provides information on the format of the RVP messages and the flow
of messages between a peer and the rendezvous peer.This chapter also covers
the Rendezvous service’s dual role, providing both a local interface to remote
rendezvous peers and rendezvous peer services to remote peers.

00_2344 FMjxta 5/15/02 9:38 AM Page xiv

xv

Chapter 7,“The Peer Information Protocol,” discusses the Peer Information
Protocol (PIP).After a peer has been discovered using the Peer Discovery
Protocol, the status or capabilities of the peer might be required.The PIP pro-
vides a set of messages capable of querying a peer to obtain status information.
This chapter details the purpose of the PIP, the use of the PIP in JXTA appli-
cations, and the format of PIP messages; it also guides the reader through an
example application that uses the PIP to send and receive messages to com-
municate peer status information.

Chapter 8,“The Pipe Binding Protocol,” covers the Pipe Binding Protocol
(PBP). Pipes in JXTA provide a virtual communication channel connecting
endpoints on the P2P network.The PBP allows peer group members to estab-
lish a connection to another peer, independent of the transport mechanism.
This chapter details the purpose of the PBP, the use of the PBP in P2P appli-
cations, and the format of PBP messages; it also guides the reader through an
example application that uses the PBP to exchange messages over a pipe with
another peer.

Chapter 9,“The Endpoint Routing Protocol,” discusses the Endpoint
Routing Protocol (ERP). Due to the ad hoc nature of a P2P network, a
mechanism is required to enable messages to be routed between peers.The
ERP provides peers with a mechanism for determining a route to an end-
point.This routing mechanism is provided transparently by the Endpoint
service, allowing a peer to send messages without needing to take special steps
to handle communication via intermediary peers.This chapter details the pur-
pose of the ERP and the format of the ERP’s messages, and it guides the user
through an example application that uses the ERP and the Endpoint service
to send messages to another peer endpoint.

Chapter 10,“Peer Groups and Services,” covers the use of peer groups to
segment the network space and provide new services on the JXTA network.
The chapter discusses peer group creation and configuration, as well the
process of bootstrapping the JXTA platform. Much coverage of the topic of
modules is provided, and the chapter’s example demonstrates the creation of a
new peer group service and the creation of a peer group configured to use the
new peer group service.

Chapter 11,“A Complete Sample Application,” guides the reader through
the process of creating a complete P2P solution using all the JXTA protocols.
Examples from each of the preceding chapters are used as the foundation of
the application and are brought together to provide all the elements of the
final P2P solution.

00_2344 FMjxta 5/15/02 9:38 AM Page xv

xvi

Chapter 12,“The Future of JXTA,” outlines some of the future directions
currently being pursued by JXTA project groups, including implementations
of JXTA for other languages and bindings to other network transports. In
addition, this chapter introduces some of the other community projects that
build on JXTA to provide services and applications.

Two appendixes provide a glossary of terms and three-letter acronyms
(TLA) used in the book, as well as a list of related online resources.

Who Is this Book For?
This book is targeted at software developers doing peer-to-peer application
development who are interested in detailed information on the JXTA plat-
form technologies and concepts.This book assumes an intermediate level of
Java development knowledge and a basic knowledge of networking.
Developers who are not familiar with Java should still be able to understand
and run the book’s example code with a minimum of difficulty.

Conventions Used in this Book
This book follows a few typographical conventions:

n A new term is set in italics the first time it is introduced.
n Program text, functions, variables, and other “computer language”

are set in a fixed-pitch font—for example, <Person>.
n When a line of code wraps to a new line, a code continuation character

(➥) is used to indicate.

When there’s additional information to the discussion, I’ll add a sidebar that
looks like this:

The Tragedy of the Commons
In many communities that share resources, there is a risk of suffering from the Tragedy of the
Commons: the overuse of a shared resource to the point of its destruction. The Tragedy of the
Commons originally referred to the problem of overgrazing on public lands, but the term can
apply to any public resource that can be used without restriction.

00_2344 FMjxta 5/15/02 9:38 AM Page xvi

xvii

When there’s a tip that I want to share, I’ll add a note that looks like this:

Note
This sets a system property called net.jxta.tls.password to the password value provided after the
equals (=) sign and sets a system property called net.jxta.tls.principal to the username pro-
vided. When you start the Shell from the command line and include these parameters, the Shell
starts immediately without prompting for your username and password.

What You’ll Need to Try the Examples
The examples and screenshots in this book were created using the Java 2 SDK
Standard Edition version 1.3.1 from Sun Microsystems running on Windows
2000.Although Java runs on a variety of operating systems, it’s still safe to say
that most people are running Windows. However, all the example applications
should run on any operating system with an implementation of the Java 2
SDK and JVM version 1.3.1 or later. If you are running the examples on a
non-Windows system, you might need to translate some commands from
Windows to your own operating system’s equivalent commands.

To download the Java 2 SDK Standard Edition for Windows 2000 or a
number of other platforms, go to www.javasoft.com/j2se/ and download the
appropriate SDK for your operating system. For Mac users, a Mac implemen-
tation of the Java 2 Standard Edition SDK is available from www.apple.com/java/,
but only for users of the Mac OS X operating system.

All the Java source code for the examples discussed in this book is available
for download from the New Riders web site at www.newriders.com.

00_2344 FMjxta 5/15/02 9:38 AM Page xvii

00_2344 FMjxta 5/15/02 9:38 AM Page xviii

The Basics of JXTA

I

1 Introduction

2 P2P Concepts

3 Introducing JXTA P2P Solutions

01_2344 Part I 5/14/02 11:25 AM Page 1

01_2344 Part I 5/14/02 11:25 AM Page 2

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introduction

1

PEER-TO-PEER (P2P) TECHNOLOGY ENABLES any network-aware device to pro-
vide services to another network-aware device.A device in a P2P network can
provide access to any type of resource that it has at its disposal, whether docu-
ments, storage capacity, computing power, or even its own human operator.
Although P2P might sound like a dot-com fad, the technology is a natural
extension of the Internet’s philosophy of robustness through decentralization.
In the same manner that the Internet provides domain name lookup (DNS),
World Wide Web, email, and other services by spreading responsibility among
millions of servers, P2P has the capacity to power a whole new set of robust
applications by leveraging resources spread across all corners of the Internet.

Introduction to Peer-to-Peer
Most Internet services are distributed using the traditional client/server archi-
tecture, illustrated in Figure 1.1. In this architecture, clients connect to a server
using a specific communications protocol, such as the File Transfer Protocol
(FTP), to obtain access to a specific resource. Most of the processing involved
in delivering a service usually occurs on the server, leaving the client relatively
unburdened. Most popular Internet applications, including the World Wide
Web, FTP, telnet, and email, use this service-delivery model.

02_2344 Ch 01 5/14/02 11:26 AM Page 3

4 Chapter 1 Introduction

Figure 1.1 Client/server architecture.

Unfortunately, this architecture has a major drawback.As the number of clients
increases, the load and bandwidth demands on the server also increase, eventu-
ally preventing the server from handling additional clients.The advantage of
this architecture is that it requires less computational power on the client side.
Ironically, most users have been persuaded to upgrade their computer systems
to levels that are ludicrously overpowered for the most popular Internet appli-
cations: surfing the web and retrieving email.

The client in the client/server architecture acts in a passive role, capable of
demanding services from servers but incapable of providing services to other
clients.This model of service delivery was developed at a time when most
machines on the Internet had a resolvable static IP address, meaning that all
machines on the Internet could find each other easily using a simple name
(such as yourmachine.com). If all machines on the network ran both a server and
a client, they formed the foundation of a rudimentary P2P network.

As the Internet grew, the finite supply of IP addresses prompted service
providers to begin dynamically allocating IP addresses to machines each time
they connected to the network through dial-up connections.The dynamic
nature of these machines’ IP addresses effectively prevented users from running
useful servers.Although someone could still run a server, that user couldn’t
access it unless he knew the machine’s IP address beforehand.These computers
form the “edge” of the Internet: machines that are connected but incapable of
easily participating in the exchange of services. For this reason, most useful ser-
vices are centralized on servers with resolvable IP addresses, where they can be
reached by anyone who knows the server’s easy-to-remember domain name.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

newriders.com

Client Responsibilities:

- Sending commands to request a service

- Receiving responses to a request for a service Server Responsibilities:

- Receiving commands requesting a service

- Processing service requests and executing the requested service

- Sending response with results of the requested service

02_2344 Ch 01 5/14/02 11:26 AM Page 4

5Introduction to Peer-to-Peer

Another reason that most clients’ machines can’t run servers is that they are
a part of a private network, usually run by their own corporation’s IT depart-
ment.This private network is usually isolated from the Internet by a firewall, a
device designed to prevent arbitrary connections into and out of the private
network. Corporations usually create a private network to secure sensitive cor-
porate information as well as to prevent against network abuse or misuse.The
side effect of this technology is that a computer outside the private network
can’t connect to a computer within the private network to obtain services.

Consider the amount of computing and storage power that these client
machines represent! Assume that only 10 million 100MHz machines are con-
nected to the Internet at any one time, each possessing only 100MB of unused
storage space, 1000bps of unused bandwidth, and 10% unused processing
power.At any one time, these clients represent 10 petabytes (PB) (1015 bytes) of
available storage space, 10 billion bps of available bandwidth (approximately
1.25GBps), and 108 MHz of wasted processing power! These are conservative
estimates that only hint at the enormous untapped potential waiting to be
unleashed from the “edge” of the Internet.

P2P is the key to realizing this potential, giving individual machines a
mechanism for providing services to each other. Unlike the client/server archi-
tecture, P2P networks don’t rely on a centralized server to provide access to
services, and they usually operate outside the domain name system.As shown
in Figure 1.2, P2P networks shun the centralized organization of the
client/server architecture and instead employ a flat, highly interconnected
architecture. By allowing intermittently connected computers to find each
other, P2P enables these machines to act as both clients and servers that can
determine the services available on the P2P network and engage those services
in some application-specific manner.

The main advantage of P2P networks is that they distribute the responsibil-
ity of providing services among all peers on the network; this eliminates
service outages due to a single point of failure and provides a more scalable
solution for offering services. In addition, P2P networks exploit available
bandwidth across the entire network by using a variety of communication
channels and by filling bandwidth to the “edge” of the Internet. Unlike
traditional client/server communications, in which specific routes to popular
destinations can become overtaxed (for example, the route to Amazon.com),
P2P enables communication via a variety of network routes, thereby reducing
network congestion.

02_2344 Ch 01 5/14/02 11:26 AM Page 5

6 Chapter 1 Introduction

Figure 1.2 Peer-to-peer architecture.

P2P has the capability of serving resources with high availability at a much
lower cost while maximizing the use of resources from every peer connected
to the P2P network.Whereas client/server solutions rely on the addition of
costly bandwidth, equipment, and co-location facilities to maintain a robust
solution, P2P can offer a similar level of robustness by spreading network and
resource demands across the P2P network. Companies such as Intel are already
using P2P to reduce the cost of distributing documents and files across the
entire company.

Unfortunately, P2P suffers from some disadvantages due to the redundant
nature of a P2P network’s structure.The distributed form of communications
channels in P2P networks results in service requests that are nondeterministic
in nature. For example, clients requesting the exact same resource from the
P2P network might connect to entirely different machines via different com-
munication routes, with different results. Requests sent via a P2P network
might not result in an immediate response and, in some cases, might not result
in any response. Resources on a P2P network can disappear at times as the
clients that host those resources disconnect from the network; this is different
from the services provided by the traditional Internet, which have most
resources continuously available.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

Peer Responsibilities, as a Client on the Network:

- Sending commands to other peers to request a service

- Receiving responses to a request for a service

Peer Responsibilities, as a Server:

- Receiving commands from other peers requesting a service

- Processing service requests and executing the requested service

- Sending response with results of the requested service

- Propogating requests for service to other peers

02_2344 Ch 01 5/14/02 11:26 AM Page 6

7Why Is Peer-to-Peer Important?

However, P2P can overcome all these limitations.Although resources might
disappear at times, a P2P application might implement functionality to mirror
the most popular resources over multiple peers, thereby providing redundant
access to a resource. Greater numbers of interconnected peers reduce the
likelihood that a request for a service will go unanswered. In short, the very
structure of a P2P network that causes problems can be used to solve them.

Why Is Peer-to-Peer Important?
Although P2P gained notoriety as a means for illegally distributing copy-
righted intellectual property, P2P has more to offer the computing world than
easy access to stolen music or video files.To illustrate the difference between
the way things are done now and how P2P could provide more useful and
robust solutions, consider the following example.

To find some specific information on the Internet, I usually point my web
browser to my favorite search engine, Google, and submit a search query.
Most times, I’ll receive a list of several thousand results, many of which are
unrelated, are out-of-date, or worse yet, point to resources that no longer exist.
How frustrating!

One of the problems with the current search engine solution lies in the
centralization of knowledge and resources. Google relies on a central database
that is updated daily by scouring the Internet for new information. Due to the
number of indexed web pages in its database (more than 1.6 billion), not every
entry gets updated every day.As a result of this shortcoming, the information
in the Google database might not reflect the most up-to-date information
available, thus diminishing the usefulness of its results for any given search
query.

The search engine technology has a number of other disadvantages:
n It requires a lot of equipment. Google, for example, runs a Linux cluster

of 10,000 machines to provide its service.
n If the search engine goes offline (due to, say, a network outage), all the

search engine’s information is unavailable.
n Due to the size of the Internet, the search engine cannot provide a

comprehensive index of the Internet.
n Search engines can’t interface with information stored in a corporate

web site’s database, meaning that the search engine can’t “see” some
information.

02_2344 Ch 01 5/14/02 11:26 AM Page 7

8 Chapter 1 Introduction

A similar service could be implemented using P2P technology, augmenting the
service with additional desirable properties. Imagine if every person could run
a personal web server on a desktop computer! Suppose that, in addition to
serving content from the user’s machine, this server had the capability to
process requests for information about the documents managed by the server.
A user’s server could receive a query, check the documents that it manages for
a match, and respond to the query with a list of matching documents.

The user’s server would be responsible for indexing the documents that it
made available and therefore would be capable of providing more accurate,
up-to-date information on the user’s documents to anyone submitting a search
query.The task of indexing a single user’s documents would be much more
manageable than the task facing Google (a couple dozen web pages versus
billions of pages). Corporations could provide gateways to connect their own
web sites’ databases of information to the P2P network, providing searchable
access to information that the search engines currently can’t reach.

The system would have this added advantage: If the user’s server discon-
nected from the network, the search service would also become unavailable;
users searching the network wouldn’t receive results for resources that were
unavailable.As someone searching for information, I would be almost guaran-
teed that any result I found using the system would be available, reducing
wasted search time. I could even sort search results from the entire network to
determine which information might suit my needs better based on various
characteristics (such as the responsiveness of the server hosting a resource or
the number of servers hosting a copy of the same resource).

This example application of P2P technology isn’t perfect. For one thing,
anyone wanting to drive traffic to a site could return that site as a match to
any search query. However, the example illustrates the underlying principle of
P2P: to enable anyone to offer services over a network. Until now, the tradi-
tional Internet experience has been mostly passive. Like the desktop publishing
revolution of the mid-1980s, P2P promises to revolutionize the exchange of
information.

A Brief History of P2P
Peer-to-peer has always existed, but it hasn’t always been recognized as such;
servers with fixed or resolvable IP addresses have always had the capability to
communicate with other servers to access services.A number of pre-P2P
applications, such as email and the domain name system, built on these capa-
bilities to provide distributed networks, but one such application, Usenet,
stands out from the others.

02_2344 Ch 01 5/14/02 11:26 AM Page 8

9A Brief History of P2P

Usenet was created in 1979 by two North Carolina grad students,Tom
Truscott and Jim Ellis, to provide a way for two computers to exchange infor-
mation in the early days before ubiquitous Internet connectivity.Their first
iteration allowed a computer to dial another computer, check for new files,
and download those files; this was done at night to save on long-distance tele-
phone charges.The system evolved into the massive newsgroup system that it
is today. However, as large as Usenet is, it has a few properties that help distin-
guish it as probably the first P2P application. Usenet has no central managing
authority—the distribution of content is managed by each node, and the con-
tent of the Usenet network is replicated (in whole or in part) across its nodes.

One of the most interesting things about Usenet is what it is: nothing!
Usenet isn’t a piece of software or a network of servers; although it requires
software and servers to operate, these things don’t truly define Usenet.At its
core, Usenet is simply a way for machines to talk to each other to allow news
messages to be posted and disseminated over a network. By providing a well-
defined protocol, the Network News Transport Protocol (Internet Engineering
Task Force RFC 977), the widest possible number of machines can participate
independently to provide services.This distribution of responsibility is what
distinguishes Usenet, making it recognizable as the first true, though rudimen-
tary, application of P2P technology.

Since Usenet, the most popular P2P applications have fallen into one
of three major categories: instant messaging, file sharing, and distributed
computing.

Instant Messaging (IM)
When Mirabilis released ICQ (www.icq.com) in November 1996, it gave its users
a faster way to communicate with friends than traditional email. ICQ allows
users to be notified when their friends come online and to send instant mes-
sages to their friends. In addition to its main capability of instant messaging,
ICQ allows users to exchange files.Though classified as a P2P application,
ICQ relies on a hybrid of the P2P and client/server architectures to provide
its service, as shown in Figure 1.3. ICQ uses a central server to monitor which
users are currently online and to notify interested parties when new users
connect to the network.All other communication between users is conducted
in a P2P fashion, with messages flowing directly from one user’s machine to
another’s with no server intermediary.

02_2344 Ch 01 5/14/02 11:26 AM Page 9

10 Chapter 1 Introduction

Figure 1.3 Hybrid P2P architecture.

Since its unveiling, ICQ has had many imitators, including MSN Messenger
(www.messenger.msn.com),AOL Internet Messenger (www.aol.com/aim), and Yahoo!
Messenger (www.messenger.yahoo.com). Sadly, these applications are not compati-
ble; each relies on its own proprietary communication protocol.As a result of
this incompatibility, users must download different client software and go
through a separate registration process for each network. Because most users
choose to avoid this inconvenience, these networks have grown into com-
pletely separate user communities that cannot interact.

More recently, various software developers have tried to bridge these sepa-
rate communities by reverse-engineering the IM protocols and making new
client software. One such application, Jabber (www.jabber.com), provides gateways
to all major IM services, allowing users to interact with each other across the
various IM networks.This attempt has met with resistance from service
providers, prompting AOL to change its communication protocol in an
attempt to block Jabber clients.

File Sharing
Napster (www.napster.com) burst onto the Internet stage in 1999, providing users
with the capability to swap MP3 files. Napster employs a hybrid P2P solution
similar to ICQ, relying on a central server to store a list of MP3 files on each
user’s machine.This server is also responsible for allowing users to search that
list of available files to find a specific song file and its host. File transfer func-
tionality is coordinated directly between peers without a server intermediary.
In addition to its main file-sharing functionality, Napster provides a chat func-
tion to allow users to send text messages to each other.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

Client Responsibilities:

- Registering and deregistering available services with the server

- Sending commands to a server to find a specific service

- Receiving responses from a server containing a list of peers

with the desired service

- Sending commands to other peers to request a specific service

- Receiving responses to a request for a service from a specific peer

- Receiving commands from other peers requesting a specific service

- Processing service requests and executing the requested service

- Sending a response to a peerÕs request for a service

Server Responsibilities:

- Registering and deregistering peersÕ

available services

- Receiving commands requesting the

location of a specific service

- Searching available services registered by

peers

- Sending response with location of

requested service

newriders.com

02_2344 Ch 01 5/14/02 11:26 AM Page 10

11A Brief History of P2P

Taking its cue from Napster, but noting the legal implications of enabling
copyright infringement, the Gnutella project (www.gnutelliums.com) took the
file-sharing concept pioneered by Napster one step further and eliminated the
need for a central server to provide search functionality.The Gnutella net-
work’s server independence, combined with its capability to share any type of
file, makes it one of the most powerful demonstrations of P2P technology.

Peers on the Gnutella network are responsible not only for serving files, but
also for responding to queries and routing messages to other peers. Note that
although Gnutella doesn’t require a central server to provide search and IP
address resolution functionality, connecting to the Gnutella network still
requires that a peer know the IP address of a peer already connected to the
P2P network. For this reason, a number of peers with static or resolvable IP
addresses have been established to provide new peers with a starting point for
discovering other peers on the network.

Eliminating the reliance on a central server has raised a number of new
issues:

n How do peers distribute messages to each other without flooding the
network?

n How do peers provide content securely and anonymously?
n How can the network encourage resource sharing?

Other file-sharing P2P variants, including Freenet (freenet.sourceforge.net),
Morpheus (www.musiccity.com), and MojoNation (www.mojonation.net), have
stepped into the arena to address these issues. Each of these applications
addresses a specific issue. Freenet provides decentralized anonymous content
storage protected by strong cryptography against tampering. Morpheus pro-
vides improved search capabilities based on metadata embedded in common
media formats. MojoNation uses an artificial currency, called Mojo, to enforce
resource sharing.

The Tragedy of the Commons
In many communities that share resources, there is a risk of suffering from the “Tragedy of the
Commons”: the overuse of a shared resource to the point of its destruction. The Tragedy of the
Commons originally referred to the problem of overgrazing on public lands, but the term can apply
to any public resource that can be used without restriction.

In some P2P systems, peers can use the resources (bandwidth and storage space) of others on the
network without making resources of their own available to the network, thereby reducing the
value of the network. As more users choose not to share their resources, those peers that do share
resources come under increased load and, in many ways, the network begins to revert to the classic
client/server architecture. Taken to its logical conclusion, the network eventually collapses, benefit-
ing no one.

02_2344 Ch 01 5/14/02 11:26 AM Page 11

12 Chapter 1 Introduction

Newer P2P solutions have tried to prevent the Tragedy of the Commons by incorporating checks to
ensure that users share resources. Lime Wire (www.limewire.com), for example, allows users to
restrict downloads based on the number of files that a requesting client is sharing with the net-
work. MojoNation (www.mojonation.net) takes this model one step further and incorporates a
system of currency that users earn by sharing resources and then spend to access resources.

Distributed Computing
Distributed computing is a way of solving difficult problems by splitting the
problem into subproblems that can be solved independently by a large
number of computers.Although the most popular applications of distributed
computing have not been P2P solutions, it is important to note the break-
through work that has been accomplished by projects such as SETI@Home
(setiathome.berkeley.edu) and Distributed.net (distributed.net) and companies
such as United Devices (www.ud.com).

In 1996, SETI@Home began distributing a screen saver–based application
to users, to allow them to process radio-telescope data and contribute to the
search for extraterrestrial life. Since then, it has signed up more than 3 million
users (of which more than a half million are active contributors). In a similar
project started in 1997, Distributed.net used the computing power of its users
to crack previously unbreakable encrypted messages. In both cases, the client
software contacts a server to download its portion of the problem being
solved; until the problem is solved, no further communication with the server
is required.

In the future, it is expected that distributed computing will evolve to take
full advantage of P2P technology to create a marketplace for spare computing
power.

Introducing Project JXTA
As you probably noticed, most of the P2P solutions overlap in some shape or
form: ICQ provides instant messaging plus a bit of file sharing. Napster pro-
vides file sharing plus a bit of instant messaging.You could even say that
Gnutella provides file sharing, plus a bit of distributed computing, due to the
way that peers take on the task of routing messages across the network.

Regrettably, the current applications of P2P tend to use protocols that are
proprietary and incompatible in nature, reducing the advantage offered by
gathering devices into P2P networks. Each network forms a closed commu-
nity, completely independent of the other networks and incapable of leverag-
ing their services.

02_2344 Ch 01 5/14/02 11:26 AM Page 12

13Introducing Project JXTA

Until now, the excitement of exploring the possibilities of P2P technology
has overshadowed the importance of interoperability and software reuse.To
evolve P2P into a mature solution platform, developers need to refocus their
efforts from programming P2P network fundamentals to creating P2P applica-
tions on a solid, well-defined base.To do this, P2P developers need a common
language to allow peers to communicate and perform the fundamentals of P2P
networking.

Realizing this need for a common P2P language, Sun Microsystems formed
Project JXTA (pronounced juxtapose or juxta), a small development team
under the guidance of Bill Joy and Mike Clary, to design a solution to serve
all P2P applications.At its core, JXTA is simply a set of protocol specifications,
which is what makes it so powerful.Anyone who wants to produce a new P2P
application is spared the difficulty of properly designing protocols to handle
the core functions of P2P communication.

What Does JXTA Mean?
The name JXTA is derived from the word juxtapose, meaning to place two entities side by side or
in proximity. By choosing this name, the development team at Sun recognized that P2P solutions
would always exist alongside the current client/server solutions rather than replacing them
completely.

The JXTA v1.0 Protocols Specification defines the basic building blocks and
protocols of P2P networking:

n Peer Discovery Protocol—Enables peers to discover peer services on
the network

n Peer Resolver Protocol—Allows peers to send and process generic
requests

n Rendezvous Protocol—Handles the details of propagating messages
between peers

n Peer Information Protocol—Provides peers with a way to obtain sta-
tus information from other peers on the network

n Pipe Binding Protocol—Provides a mechanism to bind a virtual com-
munication channel to a peer endpoint

n Endpoint Routing Protocol—Provides a set of messages used to
enable message routing from a source peer to a destination peer

The JXTA protocols are language-independent, defining a set of XML mes-
sages to coordinate some aspect of P2P networking.Although some developers
in the P2P community protest the use of such a verbose language, the choice
of XML allows implementers of the JXTA protocols to leverage existing

02_2344 Ch 01 5/14/02 11:26 AM Page 13

14 Chapter 1 Introduction

toolsets for XML parsing and formatting. In addition, the simplicity of the
JXTA protocols makes it possible to implement P2P solutions on any device
with a “digital heartbeat,” such as PDAs or cell phones, further expanding the
number of potential peers.

In April 2001, Bill Joy placed Project JXTA in the hands of the P2P devel-
opment community by adopting a license based on the Apache Software
License Version 1.1. In addition to maintaining the JXTA v1.0 Protocols
Specification, Project JXTA is responsible for the development of reference
implementations of the JXTA platform and source code control for a variety
of JXTA Community projects. Currently, Project JXTA has a reference imple-
mentation available in Java, with implementations in C, Objective-C, Ruby,
and Perl 5.0 under way.At this time, Project JXTA houses a variety of JXTA
Community projects that are applying JXTA technology in diverse fields such
as content management, artificial intelligence, and secure anonymous payment
systems.

Summary
This chapter provided an introduction to P2P and outlined the problems of
the traditional client/server architecture that P2P can be used to solve.The
advantages and shortcomings of current P2P solutions were presented, and the
JXTA solution was briefly introduced.

The next chapter examines the common problems that face P2P imple-
mentations and how they can be solved.These solutions are presented inde-
pendently of the JXTA technology but use the JXTA terminology.This allows
the chapter to provide a high-level overview of P2P that doesn’t overwhelm
the reader with JXTA-specific details.

02_2344 Ch 01 5/14/02 11:26 AM Page 14

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

P2P Concepts

2

IT’S NECESSARY TO INTRODUCE THE TERMINOLOGY and concepts of JXTA and
place them in the general framework that’s common to all P2P networks.This
chapter introduces the terminology used to describe aspects of P2P networks,
the components common to all P2P solutions (including those not built using
JXTA technology), and the problems and solutions inherent in P2P networks.

Elements of P2P Networks
P2P is the solution to a straightforward question: How can you connect a set
of devices in such a way that they can share information, resources, and ser-
vices? On the surface, it seems a simple question, but to answer it properly
requires answering several implied questions:

n How does one device learn of another device’s presence?
n How do devices organize to address common interests?
n How does a device make its capabilities known?
n What information is required to uniquely identify a device?
n How do devices exchange data?

03_2344 Ch 02 5/14/02 11:28 AM Page 15

16 Chapter 2 P2P Concepts

All P2P networks build on fundamental elements to provide the answers to
these questions and others. Unfortunately, many of these elements are assumed
or implied by proprietary P2P networks and are hard-coded into many P2P
applications’ implementations, resulting in inflexibility. For example, the major-
ity of current P2P solutions assumes the use of TCP as a network transport
mechanism and cannot operate in any other network environment. Flexible
P2P solutions need a language that explicitly declares all of the variables in
any P2P solution.

The following sections define the basic terminology of P2P networking.
I’ve tried to provide definitions at this point that use the JXTA terminology
while omitting the JXTA-specific implementation details.This will help you
learn the language of JXTA and P2P without being overwhelmed by JXTA-
specific details.

Peers
A peer is a node on a P2P network that forms the fundamental processing unit
of any P2P solution. Until now, you might have described a peer as an applica-
tion running on a single computer connected to a network such as the
Internet, but that limited definition wouldn’t capture the true function of a
peer and all its possible incarnations.This limited definition discounts the pos-
sibility that a peer might be an application distributed over several machines or
that a peer might be a smaller device, such as a PDA, that connects to a net-
work indirectly, such as via a synching cradle.A single machine might even be
responsible for running multiple peer instances.

To encompass all these facets, this book defines a peer as follows:

Any entity capable of performing some useful work and communicating
the results of that work to another entity over a network, either directly
or indirectly.

The definition of useful work depends on the type of peer.Three possible types
of peers exist in any P2P network:

n Simple peers
n Rendezvous peers
n Router peers

Each peer on the network can act as one or more types of peer, with each
type defining a different set of responsibilities for the peer to the P2P network
as a whole.

03_2344 Ch 02 5/14/02 11:28 AM Page 16

17Elements of P2P Networks

Simple Peers

A simple peer is designed to serve a single end user, allowing that user to pro-
vide services from his device and consuming services provided by other peers
on the network. In all likelihood, a simple peer on a network will be located
behind a firewall, separated from the network at large; peers outside the fire-
wall will probably not be capable of directly communicating with the simple
peer located inside the firewall.

Because of their limited network accessibility, simple peers have the least
amount of responsibility in any P2P network. Unlike other peer types, they are
not responsible for handling communication on behalf of other peers or serv-
ing third-party information for consumption by other peers.

Rendezvous Peers

Taken literally, a rendezvous is a gathering or meeting place; in P2P, a ren-
dezvous peer provides peers with a network location to use to discover other
peers and peer resources. Peers issue discovery queries to a rendezvous peer,
and the rendezvous provides information on the peers it is aware of on the
network. How a rendezvous peer discovers other peers on its local network
will be discussed in the section “P2P Communication,” later in this chapter.

A rendezvous peer can augment its capabilities by caching information on
peers for future use or by forwarding discovery requests to other rendezvous
peers.These schemes have the potential to improve responsiveness, reduce net-
work traffic, and provide better service to simple peers.

A rendezvous peer will usually exist outside a private internal network’s
firewall.A rendezvous could exist behind the firewall, but it would need to be
capable of traversing the firewall using either a protocol authorized by the
firewall or a router peer outside the firewall.

Router Peers

A router peer provides a mechanism for peers to communicate with other
peers separated from the network by firewall or Network Address Translation
(NAT) equipment.A router peer provides a go-between that peers outside the
firewall can use to communicate with a peer behind the firewall, and vice
versa.This technique of firewall and NAT traversal is discussed in detail in the
upcoming section “Challenges to Direct Communication.”

To send a message to a peer via a router, the peer sending the message must
first determine which router peer to use to communicate with the destination
peer.This routing information provides a mechanism in P2P to replace tradi-
tional DNS, enabling an intermittently connected device with a dynamic IP

03_2344 Ch 02 5/14/02 11:28 AM Page 17

18 Chapter 2 P2P Concepts

address to be found on the network. In a similar manner to the way that DNS
translates a simple name to an IP address, routing information provides a map-
ping between a unique identifier specifying a remote peer on the network and
a representation that can be used to contact the remote peer via a router peer.

In simple systems, routing information might consist solely of resolving an
IP address and a TCP port for a given unique identifier.A more complex sys-
tem might provide routing information consisting of an ordered list of router
peers to use to properly route a message to a peer. Routing a message through
multiple router peers might be necessary to allow two peers to communicate
by using a router peer to translate between two different and incompatible
network transports.

Peer Groups
Before JXTA, the proprietary and specialized nature of P2P solutions and
their associated protocols divided the usage of the network space according to
the application. If you wanted to perform file sharing, you probably used the
Gnutella protocol and could communicate only with other peers using
the Gnutella protocol; similarly, if you wanted to perform instant messaging,
you used ICQ and could communicate only with other peers also using ICQ.

The protocols’ incompatibilities effectively divided the network space based
on the application being used by the peers involved. If you consider a P2P sys-
tem in which all clients can speak the same set of protocols, as they can in
JXTA, the concept of a peer group is necessary to subdivide the network
space.As you would probably expect, a peer group is defined as follows:

A set of peers formed to serve a common interest or goal dictated by the
peers involved. Peer groups can provide services to their member peers
that aren’t accessible by other peers in the P2P network.

Peer groups divide the P2P network into groups of peers with common goals
based on the following:

n The application they want to collaborate on as a group. A peer
group is formed to exchange service that the members do not want
to have available to the entire population of the P2P network. One
reason for doing this could be the private nature of the data used by
the application.

n The security requirements of the peers involved. A peer group can
employ authentication services to restrict who can join the group and
access the services offered by the group.

03_2344 Ch 02 5/14/02 11:28 AM Page 18

19Elements of P2P Networks

n The need for status information on members of the group.
Members of a peer group can monitor other members. Status informa-
tion might be used to maintain a minimum level of service for the peer
group’s application.

Peer group members can provide redundant access to a service, ensuring that
a service is always available to a peer group as long as at least one member is
providing the service.

Network Transport
To exchange data, peers must employ some type of mechanism to handle the
transmission of data over the network.This layer, called the network transport, is
responsible for all aspects of data transmission, including breaking the data into
manageable packets, adding appropriate headers to a packet to control its desti-
nation, and in some cases, ensuring that a packet arrives at its destination.A
network transport could be a low-level transport, such as UDP or TCP, or a
high-level transport, such as HTTP or SMTP.

The concept of a network transport in P2P can be broken into three con-
stituent parts:

n Endpoints—The initial source or final destination of any piece of data
being transmitted over the network.An endpoint corresponds to the net-
work interfaces used to send and receive data.

n Pipes—Unidirectional, asynchronous, virtual communications channels
connecting two or more endpoints.

n Messages—Containers for data being transmitted over a pipe from one
endpoint to another.

To communicate using a pipe, a peer first needs to find the endpoints, one for
the source of the message and one for each destination of the message, and
connect them by binding a pipe to each of the endpoints.When bound this
way, the endpoint acting as a data source is called an output pipe and the end-
point acting as a data sink is called an input pipe.The pipe itself isn’t responsible
for actually carrying data between the endpoints; it’s merely an abstraction
used to represent the fact that two endpoints are connected.The endpoints
themselves provide the access to the underlying network interface used for
transmitting and receiving data.

To send data from one peer to another, a peer packages the data to be
transmitted into a message and sends the message using an output pipe; on the
opposite end, a peer receives a message from an input pipe and extracts the
transmitted data.

03_2344 Ch 02 5/14/02 11:28 AM Page 19

20 Chapter 2 P2P Concepts

Notice that a pipe provides communication in only one direction, thus
requiring two pipes to achieve two-way communication between two peers.
The definition of a pipe is structured this way to capture the lowest common
denominator possible in network communications, to avoid excluding any
possible network transports.Although bidirectional communication is the
norm in modern networks, there’s no reason to exclude the possibility of a
unidirectional communications channel in the definition because any bidirec-
tional network transport can easily be modeled using two unidirectional pipes.

Services
Services provide functionality that peers can engage to perform “useful work”
on a remote peer.This work might include transferring a file, providing status
information, performing a calculation, or basically doing anything that you
might want a peer in a P2P network to be capable of doing. Services are the
motivation for gathering devices into a P2P network; without services, you
don’t a have a P2P network—you have just a set of devices incapable of lever-
aging each other’s resources.

Services can be divided into two categories:
n Peer services—Functionality offered by a particular peer on the net-

work to other peers.The capabilities of this service will be unique to
the peer and will be available only when the peer is connected to the
network.When the peer disconnects from the network, the service is
no longer available.

n Peer group services—Functionality offered by a peer group to mem-
bers of the peer group.This functionality could be provided by several
members of the peer group, thereby providing redundant access to the
service.As long as one member of the peer group is connected to the
network and is providing the service, the service is available to the peer
group.

Most of the functionality required to create and maintain a P2P network, such
as the underlying protocols required to find peers and resources, could also be
considered services.These core services provide the basic P2P foundation used to
build other, more complex services.

Advertisements
Until now, P2P applications have used an informal form of advertisements.
In Gnutella, the results returned by a search query could be considered an

03_2344 Ch 02 5/14/02 11:28 AM Page 20

21Elements of P2P Networks

advertisement that specifies the location of a specific song file on the Gnutella
network.These primitive advertisements are extremely limited in their purpose
and application.At its core, an advertisement is defined as follows:

A structured representation of an entity, service, or resource made
available by a peer or peer group as a part of a P2P network.

All the building blocks discussed up to this point in the chapter can be
described by advertisements, including peers, peer groups, pipes, endpoints, ser-
vices, and content.When you start looking at advertisements in JXTA, you’ll
see the power of describing resources as advertisements and learn how adver-
tisements simplify the task of organizing P2P networks.

Protocols
Every data exchange relies on a protocol to dictate what data gets sent and in
what order it gets sent. Even the simplest human gesture, the handshake, is
built on a protocol that defines when it’s appropriate to shake hands, which
hand to use, and how long to shake.A protocol is simply this:

A way of structuring the exchange of information between two or more
parties using rules that have previously been agreed upon by all parties.

In P2P, protocols are needed to define every type of interaction that a peer can
perform as part of the P2P network:

n Finding peers on the network
n Finding what services a peer provides
n Obtaining status information from a peer
n Invoking a service on a peer
n Creating, joining, and leaving peer groups
n Creating data connections to peers
n Routing messages for other peers

The organization of information into advertisements simplifies the protocols
required to make P2P work.The advertisements themselves dictate the struc-
ture and representation of the data, simplifying the definition of a protocol.
Rather than passing back and forth raw data, protocols simply organize the
exchange of advertisements containing the required information to perform
some arbitrary functionality.

03_2344 Ch 02 5/14/02 11:28 AM Page 21

22 Chapter 2 P2P Concepts

Entity Naming
Most items on a P2P network need some piece of information that uniquely
identifies them on the network:

n Peers—A peer needs an identifier that other peers can use to locate
or specify it on the network. Identifying a particular peer could be
necessary to allow a message to be routed through a third party to the
correct peer.

n Peer groups—A peer needs some way to identify which peer group it
would like to use to perform some action.Actions could include joining,
querying, or leaving a peer group.

n Pipes—To permit communication, a peer needs some way of identifying
a pipe that connects endpoints on the network.

n Contents—A piece of content needs to be uniquely identifiable to
enable peers to mirror content across the network, thereby providing
redundant access. Peers can then use this unique identifier to find the
content on any peer.

In traditional P2P networks, some of these identifiers might have used net-
work transport-specific details; for example, a peer could be identified by its IP
address. However, using system-dependent representations is inflexible and
can’t provide a system of identification that is independent of the operating
system or network transport. In the ideal P2P network, any device should be
capable of participating, regardless of its operating system or network transport.
A system-independent entity naming scheme is a requirement for a flexible
P2P network.

P2P Communication
The fundamental problem in P2P is how to enable the exchange of services
between networked devices. Solving this problem requires first finding answers
to two important questions:

n How does a device find peers and services on a P2P network?
n How does a device in a private network participate in P2P?

The first question is important because, without the knowledge of the exis-
tence of a peer or a service on the network, there’s no possibility for a device
to engage that service.The second question is important to answer because
many devices in a P2P network will be separated from the network at large
by networking equipment designed to prevent or restrict direct connections
between two devices in different internal private networks.

03_2344 Ch 02 5/14/02 11:28 AM Page 22

23P2P Communication

Finding Advertisements
Any of the basic building blocks discussed in the last section can be repre-
sented as an advertisement, and that characteristic considerably simplifies the
problem of finding peers, peer groups, services, pipes, and endpoints. Instead of
worrying about the specific case, such as finding a peer, you need to consider
only the general problem of finding advertisements on the network.

A peer can discover an advertisement in three ways:
n No discovery
n Direct discovery
n Indirect discovery

The first technique involves no network connectivity and can be considered
a passive discovery technique.The other two techniques involve connecting
to the network to perform discovery and are considered active discovery
techniques.

No Discovery

The easiest way for a peer to discover advertisements is to eliminate the
process of discovery entirely. Instead of actively searching for advertisements
on the network, a peer can rely on a cache of previously discovered advertise-
ments to provide information on peer resources, as shown in Figure 2.1.
Although this method might sound trivial, it can effectively reduce the
amount of network traffic generated by the peer and allow a peer to obtain
nearly instantaneous results, unlike active discovery methods.

Peer 1 Peer 3

Peer 5 Peer 4

3. Peer 1 uses the advertisements

returned by the cache to engage

services from peers 2, 3, 4, and 5.

1. Peer goes to cache to

find pre-existing information

on available peers.

2. Cache returns

information on previously

discovered peers.

Cache

Peer 2 Peer 3 Peer 4 Peer 5

Cached advertisements

describing peers 2, 3, 4, and 5.

Figure 2.1 Peer discovery using cached advertisements.

03_2344 Ch 02 5/14/02 11:28 AM Page 23

24 Chapter 2 P2P Concepts

In its simplest form, the local cache might consist only of a text file that lists
the IP addresses and ports of previously discovered rendezvous peers, thereby
providing a starting point for active peer discovery.At the other extreme, a
cache might be as comprehensive as a database of every advertisement discov-
ered by the peer in the past.The cache of advertisements might even be
hard-coded into the P2P application itself, although this would limit the
flexibility of the application somewhat.

A drawback of using a cache of known advertisements is the potential for
advertisements in the cache to grow stale and describe resources that are no
longer available on the network.This presents a problem when a peer attempts
to engage a resource described by a stale advertisement and fails to engage the
service.Although the cache has the potential to reduce network traffic, in this
case, stale advertisements in the cache increase network traffic.When a peer
attempts to engage a resource over the network and discovers that the resource
is no longer available, the peer will probably have to resort to an active discov-
ery method.Thus, the peer engages the network twice in this case instead of
once, which would have been the case if it had used only active discovery.

To reduce the possibility that a given advertisement is stale, a cache can
expire advertisements, thereby removing them from the cache based on the
probability that a given advertisement is still valid.

One way to expire advertisements is to store a best before timestamp in
the cache with each advertisement.When an advertisement is discovered, a
timestamp is stored in the cache, setting the maximum lifespan of the adver-
tisement. Before using an advertisement, the cache checks the advertisement’s
best before timestamp and discards the advertisement if it’s no longer consid-
ered valid. Instead of waiting for an advertisement to be used, the cache might
also periodically cull the store of expired advertisements to reduce storage
requirements and improve responsiveness.

Another expiration technique that a cache might use is a first-in, first-out
stack of advertisements with a fixed maximum size for the stack.When the
cache is full, adding a new advertisement to the stack pushes out the oldest
advertisement first.

Using a cache to discover advertisements is simple to implement, especially
when built in conjunction with active discovery methods. In most modern
programming languages, it’s trivial to create code that processes an advertise-
ment from an abstract source and to create wrappers for file and network
sources.When done this way, the code is independent of the source and will
operate the same regardless of whether the advertisement originated from a
file cache or from another peer on the network.

03_2344 Ch 02 5/14/02 11:28 AM Page 24

25P2P Communication

Direct Discovery

Peers that exist on the same LAN might be capable of discovering each other
directly without relying on an intermediate rendezvous peer to aid the discov-
ery process. Direct discovery requires peers to use the broadcast or multicasting
capabilities of their native network transport, as shown in Figure 2.2.

Peer 2

Peer 1 Peer 3

Peer 5 Peer 4

2. All peers receive the broadcast,
and reply to Peer 1, thereby
providing Peer 1 information on the
peers’ location on the network.

1. Peer 1 sends a broadcast to
all peers on the local network.

Figure 2.2 Direct peer discovery.

When other peers have been discovered using this mechanism, the peer can
discover other advertisements by communicating directly with the peers, with-
out using broadcast or multicast capabilities.

Unfortunately, this discovery technique is limited to peers located on the
same local LAN segment and usually can’t be used to discover peers outside
the local network. Discovering peers and advertisements outside the private
network requires indirect discovery conducted via a rendezvous peer.

Indirect Discovery

Indirect discovery requires using a rendezvous peer to act as a source of
known peers and advertisements, and to perform discovery on a peer’s behalf.
This technique can be used by peers on a local LAN to find other peers with-
out using broadcast or multicast capabilities, or by peers in a private internal
network to find peers outside the internal network.

03_2344 Ch 02 5/14/02 11:28 AM Page 25

26 Chapter 2 P2P Concepts

Rendezvous peers provide peers with two possible ways of locating peers
and other advertisements:

n Propagation—A rendezvous peer passes the discovery request to other
peers on the network that it knows about, including other rendezvous
peers that also propagate the request to other peers.

n Cached advertisements—In the same manner that simple peers can
use cached advertisements to reduce network traffic, a rendezvous
can use cached advertisements to respond to a peer’s discovery queries.

When used together as shown in Figure 2.3, propagation and caching provide
an effective solution for rendezvous peers to cache a large number of
advertisements and serve a large number of simple peers.As each simple or
rendezvous peer responds to the discovery request, the rendezvous peer can
cache the response for future use, further reducing network traffic and
increasing network performance.

Peer 2

Peer 1

Peer 3

Rendezvous Peer 1

Peer 4

1. Peer sends discovery query.

Firewall

4. Rendezvous Peer 1 replies with
results from Rendezvous Peer 2,
plus information it has on Peer 2.

Rendezvous Peer 2

Peer 5

3. Rendezvous Peer 2
replies with information
about Peers 3, 4, and 5.

2. Rendezvous 1 forwards
another discovery on to
another known
rendezvous peer,
Rendezvous Peer 2

Figure 2.3 Indirect discovery via a rendezvous peer.

Although caching reduces network traffic required to discover resources, prop-
agating discovery queries to other rendezvous peers without restriction can
lead to severe network congestion on a P2P network, as shown in Figure 2.4.
When one rendezvous receives a discovery query, it forwards the request to
all the rendezvous peers that it knows; one query comes in, and many queries
go out.

03_2344 Ch 02 5/14/02 11:28 AM Page 26

27P2P Communication

Figure 2.4 Discovery propagation chaos.

This retransmission amplifies the discovery query.When the query is propa-
gated to other rendezvous peers, it is amplified again, dramatically increasing
the load on the network.Adding to the problem of unchecked propagation, a
discovery query’s path could double back on itself, creating a feedback loop or
loopback in the network.

To prevent excessive propagation of requests, messages usually incorporate a
Time To Live (TTL) attribute.TTL is expressed as the maximum number of
times a query should be propagated between peers on the network.As shown
in Figure 2.5, when a rendezvous peer receives a message containing a discov-
ery query, it decrements the message’s TTL by 1 and discards the query if the
resulting TTL value is 0. Otherwise, the query message is propagated to other
peers using the new TTL value.

As a result, each message has a maximum radius on the network that it can
travel. Of course, for this technique to work, all rendezvous peers must prop-
erly decrement the TTL field.

To address the problem of loopback, propagated messages can include path
information along with the request. Rendezvous peers along the way can use
this path information to prevent propagating a message to a rendezvous that
has already received the message.Although this technique eliminates loopback,
it doesn’t prevent a rendezvous peer from getting the same message multiple
times through indirect paths.

Rendezvous Peer 3Peer 1 Rendezvous Peer 1

Rendezvous Peer 2

2. Rendezvous forwarded
query from Rendezvous
Peer 1and forwards on to
rendezvous peers 3, 4, 5,
and 6.

Rendezvous Peer 6

Rendezvous Peer 5

Rendezvous Peer 4

1. Receives initial query
from Peer 1 and
forwards on to
rendezvous peers 2
and 3.

3. Receives forwarded
query from Rendezvous
Peer 2 and forwards to
Rendezvous Peer 1,
forming a loopback.

loopback

03_2344 Ch 02 5/14/02 11:28 AM Page 27

28 Chapter 2 P2P Concepts

Figure 2.5 Illustration of TTL in discovery propagation.

Discovering Rendezvous and Routing Peers
For most peers existing on a private internal network, finding rendezvous and
router peers is critical to participating in the P2P network. Because of the
restrictions of a private network’s firewall, a peer on an internal network has
no capability to use direct discovery to perform discovery outside the internal
network. However, a peer might still be capable of performing indirect discov-
ery using rendezvous and router peers on the internal network.

In most P2P applications, the easiest way to ensure that a simple peer can
find rendezvous and router peers is to seed the peer with a hard-coded set of
rendezvous and router peers.These rendezvous and router peers usually exist at
static, resolvable IP addresses and are used by a peer as an entrance point to the
P2P network.A peer located behind a firewall can use these static rendezvous
peers as a starting point for discovering other peers and services and can con-
nect to other peers using the static set of router peers to traverse firewalls.

Rendezvous Peer 3

Peer 1 Rendezvous Peer 1

Rendezvous Peer 2

Rendezvous Peer 6

Rendezvous Peer 5

Rendezvous Peer 4

Rendezvous Peer 7

1. Sends discovery query,
setting its TTL to 3

2. Receives discovery query,
decrements TTL to 2,
forwards on to rendezvous
peers 2 and 3

3. Receives discovery query
decrements TTL to 1,
forwards on to rendezvous
peers 4, 5, 6, and 7

4. Receives discovery query,
decrements TTL to 0, does not
forward query on to other
rendezvous peers

03_2344 Ch 02 5/14/02 11:28 AM Page 28

29P2P Communication

Challenges to Direct Communication
The use of firewalls and NAT by corporate private networks poses a serious
obstacle to P2P networking. NAT and firewalls are usually used together to
secure a corporate network against unauthorized network activity originating
from either inside or outside the network and to provide a private internal
networking environment.

Firewalls

Firewalls are used to protect corporate networks from unauthorized network
connections, either incoming from the outside network or outgoing from the
internal network, as shown in Figure 2.6.Typically firewalls use IP filtering to
regulate which protocols may be used to connect from outside the firewall to
the internal network or vice versa.A firewall might also regulate the ports used
by outside clients to initiate inbound connections to the internal network or
by internal clients to initiate outbound connections from the internal network.

Computer Firewall Computer

Incoming Connections

Firewall allows only
connections using specific
protocols and specific port
numbers to be made to the
internal network.
Connections attempted
using unauthorized
protocols or ports are
denied entry to the internal
network

Firewall allows only
connections using specific
protocols and specific port
numbers to be made to the
outside network.
Connections attempted
using unauthorized
protocols or ports are not
allowed to exit the internal
network.

Internal Private Network Outside Network (such as the Internet)

Figure 2.6 A network topology using a firewall.

03_2344 Ch 02 5/14/02 11:28 AM Page 29

30 Chapter 2 P2P Concepts

Because a firewall might block incoming connections, a peer outside the fire-
wall will most likely not be capable of connecting directly to a peer inside the
firewall.A peer within the network might also be restricted to using only cer-
tain protocols (such as HTTP) to connect to locations outside the firewall,
further limiting the types of P2P communication possible.

Network Address Translation (NAT)

NAT is a technique used to map a set of private IP addresses within an inter-
nal network to another set of external IP addresses on a public network. NAT
comes in two varieties:

n Static NAT—In static NAT, the mapping relationship between internal
and external IP addresses is one-to-one. Every internal IP address is
mapped to one and only one external IP address.

n Dynamic NAT—Dynamic NAT maps the set of internal IP addresses
to a smaller set of external IP addresses.

A private network employing NAT usually assigns internal IP addresses from
one of the ranges of IP addresses defined specifically for private networks:

n Class A private addresses: 10.0.0.0 through 10.255.255.255
n Class B private addresses: 172.16.0.0 through 172.31.255.255
n Class C private addresses: 192.168.0.0 through 192.168.255.255

A machine using an IP address within this range is most likely behind NAT
equipment.

NAT is used for a variety of reasons, the most popular reason being that it
eliminates the need for global unique IP addresses for every workstation
within a corporation, thereby reducing the cost of a corporate network. NAT
also enables system administrators to protect a network by providing only a
single point of entry into the internal network. NAT accomplishes this by
allowing only incoming connections to internal machines that originally initi-
ated a connection to the outside network. Rather than attempting to protect
each machine using a firewall to filter incoming connections, a system admin-
istrator can use NAT to ensure that the only connections allowed back into
the network are those that originated within the network.

NAT is usually implemented by a router or a firewall acting as a gateway to
the Internet for the private internal network.To map a packet from an internal
IP address to an external IP address, the router does the following:

03_2344 Ch 02 5/14/02 11:28 AM Page 30

31P2P Communication

1. Stores the source IP address and port number of the packet in the
router’s translation table

2. Replaces the source IP address for the packet with one of the IP
addresses from the router’s pool of public IP addresses, storing the map-
ping of the original IP address to the public IP address in the translation
table in the process

3. Replaces the source port number with a new port number that it assigns
and stores the mapping in the translation table

After each step has been performed, the packet is forwarded to the external
network. Data packets arriving at one of the router’s external public IP
addresses go through an inverse mapping process that uses the router’s transla-
tion table to map the external port number and IP address to an internal IP
address and port number. If no matching entry for a given public IP address
and port number is found in the translation table, the router blocks the data
from entering the internal private network.The flow of data across a NAT
router is illustrated in Figure 2.7.

Internal Private Network

Only connections initiated

by an internal client are

permitted. Connections

initiated outside the internal

network are denied entry to

the internal network.

1. Internal machine initiates

connection to outside network via

NAT router.

Network Address Translation Router

Outside Network (such as the Internet)

2. The NAT router rewrites the

headers so that the connection

appears to come from one of the

routerÕs public IP addresses. The

router stores the mapping from the

internal to the public IP address.

4. The router checks to see if a

mapping between the external

IP address and a internal

address exists. If so, the

router rewrites the headers to

use the internal IP address

and lets the connection pass

into the internal network.

3. An external client responds

to a connection using the

public IP address.

Figure 2.7 A network topology using Network Address Translation.

03_2344 Ch 02 5/14/02 11:28 AM Page 31

32 Chapter 2 P2P Concepts

NAT protects networks by allowing only connections to the internal network
that originated within the internal network.A machine outside the network
can’t connect to a machine in the internal network unless the internal
machine initiated the connection to the external machine.As a result, an
external peer in a P2P network has no mechanism to spontaneously connect
to a peer located behind a NAT gateway. From the outside peer’s point of
view, the peer doesn’t exist because no mapping between external and internal
IP addresses and port numbers exists in the router’s translation table.

Traversing the NAT/Firewall Boundary
The combined use of NAT and firewalls results in an especially difficult set
of circumstances for peer communication: Peers can’t connect to machines
behind NAT unless the internal peer initiates communication, and connec-
tions can be blocked at the firewall based on the connection’s protocol or
destination IP address and port number.

The only tool that a peer has at its disposal to solve this problem is its
capability to create outgoing network connections to hosts outside the fire-
wall/NAT gateway. Peers can use protocols permitted by the firewall to tunnel
connections through the firewall to the outside network. By initiating the
connection within the internal network, the necessary mapping in the NAT
router translation tables is set up, allowing an external machine to send data
back into the internal network. However, if a firewall is configured to deny
all outgoing connections, peer communication is impossible.

In most corporate networks, HTTP is the protocol most likely to be
enabled by a firewall for outgoing connections. Unfortunately, HTTP is a
request-response protocol: Each HTTP connection sends a request and then
expects a response.The connection must remain open after the initial request
to receive the response.Although HTTP provides a peer with a mechanism
to send requests out of the internal network, it doesn’t provide the capability
for external peers to spontaneously cross the firewall boundary to connect to
peers inside the internal network.

To address this problem, a peer inside a firewall uses a router peer either
located outside the firewall or visible outside the firewall to traverse the
firewall, as shown in Figure 2.8. Peers attempting to contact a peer behind
a firewall connect to the router peer, and the peer behind the firewall periodi-
cally connects to a router peer.When the internal peer connects to the router,
any incoming messages get pushed down to the peer in the HTTP response.

03_2344 Ch 02 5/14/02 11:28 AM Page 32

33P2P Communication

Figure 2.8 Traversing a firewall/NAT.

This technique can be used with any protocol permitted by the firewall and
understood by the router peer.The router peer effectively translates between
the network transport used for P2P communication and the transport used to
tunnel through the firewall.

Routing Messages Between Peers
In cases when a firewall or NAT is located between two peers, a router peer
must be used to proxy a connection between the public network and the peer
located inside the firewall. In the simple case, only a single firewall separates
the source and destination peers, thus requiring only a single router peer. In
more complex cases, a firewall or NAT can protect each of the peers and
require the use of multiple router peers to traverse each firewall/NAT
boundary.

Single Firewall/NAT Traversal

Figure 2.9 shows the process for sending messages outside a single
firewall/NAT.

Peer 1 Firewall/NAT Router Peer 1

Internal Private Network Outside Network (such as the Internet)

Peer 2

2. Peer 1 periodically
connects to Router Peer 1
to give the router a chance
to forward messages to it
from other peers.

3. Router Peer 1 uses the
connection from Peer 1 to
push the message from
Peer 2 into the internal
network.

1. Peer 2 sends a message
to Router Peer 1 to forward
to Peer 1 on its behalf.

03_2344 Ch 02 5/14/02 11:28 AM Page 33

34 Chapter 2 P2P Concepts

Figure 2.9 Outgoing single firewall/NAT traversal.

To allow a peer located inside a firewall/NAT to send a message to another
peer located on the public network, three steps are required:

1. The peer behind the firewall/NAT connects to the router peer using a
protocol capable of traversing the firewall, such as HTTP, and requests
that the router peer forward a message to a destination peer.

2. The router accepts the connection from the peer behind the firewall and
initiates a connection to the requested destination on the peer’s behalf.
This connection uses whatever network transport both the router peer
and the destination peer have in common.

3. The message is sent from the source to the destination peer by the router
peer, acting as a proxy for the source peer.

After the message from the source peer has been sent to the destination peer,
the connection closes. Further messages can be sent by repeating the proce-
dure, but the message might use a different router peer and, therefore, might
follow a different route to the destination peer.

To allow a public peer to send a message to a peer located behind a fire-
wall/NAT, the source peer must know routing information that describes a
router peer capable of routing the message to the destination peer. Route
information might have been obtained previously during discovery or might

Peer 1 Firewall Router Peer 1

Internal Private Network Outside Network (such as the Internet)

Peer 2

1. Peer 1 sends a
message to Router Peer 1
to forward to Peer 2 on its
behalf.

3. Peer 2 sends a
message to Router Peer 1
to forward to Peer 1 on its
behalf.

2. Router Peer 1 forwards
the message from Peer 1
on to Peer 2.

4. Peer 1 periodically
connects to Router Peer
1 to check for new
messages.

5. Router Peer 1 pushes
the message from Peer 2
to Peer 1.

03_2344 Ch 02 5/14/02 11:28 AM Page 34

35P2P Communication

require an additional discovery request to the P2P network.When the source
peer has obtained routing information, sending the message involves three
steps:

1. The source peer opens a connection to the router peer, asking it to for-
ward the message on to the destination peer.

2. The router peer waits until the destination peer connects to it using a
protocol capable of traversing the firewall, such as HTTP.

3. The destination peer connects to the router peer periodically, at which
point the message is pushed down to the destination peer.

Again, when the message reaches the destination peer, the connection between
the router peer and the other two peers is closed. Sending another message
from the source peer requires repeating the procedure and might use a differ-
ent router peer to provide connectivity to the destination peer.

Double Firewall/NAT Traversal

Most simple peers located at the edge of the Internet are likely to be protected
by a firewall/NAT, so any message being sent from a source peer to a destina-
tion peer will need to traverse two firewall/NAT boundaries.The procedure
for traversing two firewalls is similar to the single firewall traversal case and
basically combines both the incoming and the outgoing cases of the single
firewall traversal scenario. Figure 2.10 illustrates a double firewall/NAT
traversal.

Peer 1 Firewall 1
Router Peer 1

Internal Private Network Outside Network (such as the Internet)

Router Peer 2

1. Peer 1 sends a message
to Router Peer 1 to forward
to Peer 2 on its behalf via
router Peer 2, as specified
in previously obtained
routing information.

4. Router Peer 2 uses the
connection from Peer 2 to
traverse the firewall and
deliver messages on behalf
of Peer 1.

2. Router Peer 1
forwards the message
on to router Peer 2.

Firewall 2
Peer 2

3. Peer 2 connects to
Router Peer 2 periodically
to give it a chance to
forward messages.

Internal Private Network 2

Figure 2.10 Double firewall traversal.

03_2344 Ch 02 5/14/02 11:28 AM Page 35

36 Chapter 2 P2P Concepts

Before a source peer can send the message, it needs to locate routing informa-
tion for the peer that describes a set of router peers capable of proxying
messages to the destination peer. In this case, more than one router peer might
be involved; one router peer is required to allow the source peer to traverse its
firewall, and another is required to traverse the firewall providing access to the
destination peer.When the source peer has this routing information, sending
the message involves four steps:

1. The source peer opens a connection to the source router peer, asking it
to forward the message on to the destination peer by way of the destina-
tion router peer provided.

2. The source router peer opens a connection to the destination router
peer.This connection uses whatever network transport both router peers
have in common.

3. The destination router peer waits until the destination peer connects to
it using a protocol capable of traversing the firewall, such as HTTP.

4. The destination peer connects to the router peer periodically, and the
message is pushed down to the destination peer.

Traversing both firewalls might involve only one router peer if both the source
and the destination peers have a router peer in common; however, traversing
firewall boundaries isn’t the only reason to use a router peer. Multiple router
peers can be used by a peer to circumnavigate network bottlenecks and
achieve greater performance, or to provide translation between two incompati-
ble networks transports.When the peer connects to the source router peer in
this case, it provides an ordered list of router peers to use to send the message
to the peer on its behalf.

Comparisons to Existing P2P Solutions
Using the building blocks of P2P networks defined in this chapter, it’s possible
to interpret existing proprietary P2P solutions, such as Napster and Gnutella,
or even non-P2P applications, such as the client/server architecture.

Napster
Napster’s hybrid P2P network, consisting of a centralized server for perform-
ing search functionality, could be modeled as a single rendezvous peer and
multiple simple peers, all using TCP as a network transport.The rendezvous
peer provides simple peers with the capability to locate an MP3 file advertise-
ment consisting of filename, IP address, and port information. Simple peers use
this information to connect directly and download the file from its host peer.

03_2344 Ch 02 5/14/02 11:28 AM Page 36

37Summary

Napster doesn’t provide a complete solution for bypassing firewalls, and it is
capable of traversing only a single firewall. Each peer acts as a simple router,
capable of sending content to a firewalled peer when a request is made via
HTTP. Napster provides no message-routing capabilities, meaning that simple
peers on the network can’t act as router peers to enable other peers to
perform double firewall traversal.

Gnutella
In the Gnutella network, each peer acts as a simple peer, a rendezvous peer,
and a router peer, using TCP for message transport and HTTP for file transfer.
Searches on the network are propagated by a peer to all its known peer
neighbors, which then propagate the query to other peers.Advertisements for
content on the Gnutella network consist of an IP address, a port number, an
index number identifying the file on the host peer, and file details such as
name and size. Gnutella peers don’t provide full router peer capabilities, which
means that, as with Napster, Gnutella peers are capable of traversing only a
single firewall.

Client/Server
Even traditional client/server architecture can be interpreted in terms of the
P2P building blocks.The client acts as a simple peer, and the server acts as a
rendezvous peer capable of providing advertisements that vary according to the
application. No capabilities for traversing firewalls or NAT are provided, and
the network transport used varies by application.

The definitions of these basic P2P building blocks will be expanded in the
coming chapters to incorporate the implementation-specific details defined by
JXTA and the Java reference implementation of JXTA.

Summary
This chapter presented the basic building blocks of P2P networking and
explained some of the obstacles that a P2P network must overcome.
Specifically, this chapter explained the barrier to P2P communication pre-
sented by firewall/NAT routers, provided background information on how
they work, and explained how P2P manages to provide connectivity to private
networks protected by firewall/NAT routers.

The next chapter builds on this chapter and reveals the JXTA realization of
the building blocks defined in this chapter. Using the JXTA Shell, you’ll see
how to experiment with these primitives directly, to better understand them
before you explore the JXTA protocols.

03_2344 Ch 02 5/14/02 11:28 AM Page 37

03_2344 Ch 02 5/14/02 11:28 AM Page 38

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introducing JXTA P2P Solutions

3

NOW THAT YOU’VE GOTTEN A BASIC introduction to the terminology, compo-
nents, and issues of P2P networking, it’s time to begin exploring the JXTA
platform.This chapter introduces the logical structure and building blocks of
JXTA, and demonstrates the capabilities of JXTA using the JXTA Shell appli-
cation to provide interactive experimentation with the JXTA platform.

As outlined in Chapter 2,“P2P Concepts,” a complete P2P solution
provides mechanisms for a peer to do the following:

n Discover other peers and their services
n Publish its available services
n Exchange data with another peer
n Route messages to other peers
n Query peers for status information
n Group peers into peer groups

The JXTA platform defines a set of protocols designed to address the common
functionality required to allow peers on a network to form robust pervasive
networks, independent of the operating system, development language, and
network transport employed by each peer.

04_2344 Ch 03 5/14/02 11:30 AM Page 39

40 Chapter 3 Introducing JXTA P2P Solutions

Core JXTA Design Principles
While designing the protocol suite, the Project JXTA team made a conscious
decision to design JXTA in a manner that would address the needs of the
widest possible set of P2P applications.The design team stripped the protocols
of any application-specific assumptions, focusing on the core P2P functionality
that forms the foundation of all types of P2P applications.

One of the most important design choices was not to make assumptions
about the type of operating system or development language employed by a
peer. By making this choice, the Project JXTA team hoped to enable the
largest number of potential participants in any JXTA-enabled P2P networking
application.The JXTA Protocols Specification expressly states that network
peers should be assumed to be any type of device, from the smallest embedded
device to the largest supercomputer cluster.

In addition to eliminating barriers to participation based on operating sys-
tem, computing platform, or programming language, JXTA makes no assump-
tions about the network transport mechanism, except for a requirement that
JXTA must not require broadcast or multicast transport capabilities. JXTA
assumes that peers and their resources might appear and disappear sponta-
neously from the network and that a peer’s network location might change
spontaneously or be masked by Network Address Translation (NAT) or firewall
equipment.

Apart from the requirements specified by the JXTA Protocols Specification,
the specification makes several important recommendations. In particular, the
specification recommends that peers cache information to reduce network
traffic and provide message routing to peers that are not directly connected to
the network.

The JXTA Protocol Suite
Based on these design criteria and others documented in the Protocols
Specification, the Project JXTA team designed a set of six protocols based on
XML messages, shown in Figure 3.1.

Each of the JXTA protocols addresses exactly one fundamental aspect of
P2P networking. Each protocol conversation is divided into a portion con-
ducted by the local peer and another portion conducted by the remote peer.
The local peer’s half of the protocol is responsible for generating messages and
sending them to the remote peer.The remote peer’s half of the protocol is
responsible for handling the incoming message and processing the message to
perform a task.

04_2344 Ch 03 5/14/02 11:30 AM Page 40

41Core JXTA Design Principles

Figure 3.1 The JXTA protocol stack.

Each protocol is semi-independent of the others.A peer can elect to imple-
ment only a subset of the protocols to provide functionality, while relying on
prespecified behavior to eliminate the need for a protocol. For example, a peer
could rely on a preconfigured set of router peers and, therefore, would not
require an implementation of the Endpoint Routing Protocol. However, the
protocols aren’t entirely independent of each other because each layer in the
JXTA protocol stack depends on the layer below to provide connectivity to
other peers.Although it would be possible to build an independent implemen-
tation of the Peer Discovery Protocol, it wouldn’t be useful without an imple-
mentation of the Peer Resolver and Endpoint Routing Protocols to handle
transporting its messages to remote peers.

Peer Discovery Protocol

Peer Information Protocol

Pipe Binding Protocol

Peer Resolver Protocol

Rendezvous Protocol

Peer Endpoint Protocol

Network Transport

Peer Discovery Protocol

Peer Information Protocol

Pipe Binding Protocol

Via the Peer Resolver Protocol

Via the Peer Resolver Protocol

Via the Peer Resolver Protocol

Peer Resolver Protocol

Rendezvous Protocol

Peer Endpoint Protocol

Network Transport

Via the Endpoint Routing Protocol

Via the Endpoint Router Protocol

Via Installed Network Transports

Via Installed Network Transports

Local Peer Remote Peer

04_2344 Ch 03 5/14/02 11:30 AM Page 41

42 Chapter 3 Introducing JXTA P2P Solutions

Peers can even elect to implement only one half of a protocol to provide a
peer optimized for one specific task. However, despite the allowance for partial
implementations, the JXTA specification recommends that peers completely
implement all the protocols.

The Logical Layers of JXTA
The JXTA platform can be broken into three layers, as shown in Figure 3.2.

JXTA Community Applications Sun JXTA Applications
JXTA Applications

JXTA Services

JXTA Core

Peer Groups Peer Pipes Peer Monitoring

Security

The P2P Network

JXTA Shell

Peer Commands
Sun JXTA ServicesJXTA Community Services

Figure 3.2 The JXTA three-layer architecture.

Each layer builds on the capabilities of the layer below, adding functionality
and behavioral complexity.

The Core Layer

The core layer provides the elements that are absolutely essential to every P2P
solution. Ideally, the elements of this layer are shared by all P2P solutions.
These concepts were discussed in Chapter 2.The elements of the core layer
are listed here:

n Peers
n Peer groups
n Network transport (pipes, endpoints, messages)
n Advertisements

04_2344 Ch 03 5/14/02 11:30 AM Page 42

43Core JXTA Design Principles

n Entity naming (identifiers)
n Protocols (discovery, communication, monitoring)
n Security and authentication primitives

The core layer includes the six main protocols provided by JXTA.Although
these protocols are implemented as services, they are located in the platform
layer and are designated as core services to distinguish them from the service
solutions of the services layer.

The core layer, as its name suggests, is the fundamental core of the JXTA
solution.All other aspects of a JXTA P2P solution in the services or applica-
tions layers build on this layer to provide functionality.

The Services Layer

The services layer provides network services that are desirable but not neces-
sarily a part of every P2P solution.These services implement functionality
that might be incorporated into several different P2P applications, such as the
following:

n Searching for resources on a peer
n Sharing documents from a peer
n Performing peer authentication

The services layer encompasses additional functionality that is being built by
the JXTA community (open-source developers working with Project JXTA)
in addition to services built by the Project JXTA team. Services built on top
of the JXTA platform provide specific capabilities that are required by a
variety of P2P applications and can be combined to form a complete P2P
solution.

The Applications Layer

The applications layer builds on the capabilities of the services layer to provide
the common P2P applications that we know, such as instant messaging.
Because an application might encompass only a single service or aggregate
several services, it’s difficult sometimes to determine what constitutes an
application and what constitutes a service.

Usually, the presence of some form of user interface indicates an application
rather than a service. In the case of the JXTA Shell, most of the functionality
is built on peer commands, simple services that accept command-line argu-
ments from the JXTA Shell.The JXTA Shell itself is a service, providing only
a minimal user interface, so the Shell is spread across the application/service
boundary.

04_2344 Ch 03 5/14/02 11:30 AM Page 43

44 Chapter 3 Introducing JXTA P2P Solutions

Applications include those P2P applications being built by the JXTA
Community, as well as demonstration applications such as the JXTA Shell
being built by the Project JXTA team.

XML: A Brief Introduction
All aspects of JXTA build on the eXtensible Markup Language (XML) to
structure data as advertisements, messages, and protocols. XML is good choice
for representing data for five reasons:

n XML is language-neutral. Any programming language capable of
manipulating text strings is capable of parsing and formatting XML data.

n XML is simple. XML uses text markup to structure data in much the
same way that HTML structures text documents for display in web
browsers.The simplicity of XML makes it easier for developers to under-
stand and debug.

n XML is self-describing. An XML document consists of data struc-
tured using metadata tags and attributes that describe the format of the
data.Although XML supports the use of Document Type Definitions
(DTDs) to provide a schema definition of a valid document, this is not a
requirement for a well-formed XML document.

n XML is extensible. Unlike HTML, XML allows authors to define
their own set of markup tags to structure data.

n XML is a standard. The World Wide Web Consortium (www.w3.org) is
responsible for maintaining the XML standard, with industry and com-
munity input, and has been widely adopted in all areas of the computer
industry.

To learn all you’ll need to know about XML to understand JXTA, consider
the simple example given in Listing 3.1.

Listing 3.1 A Simple XML Example

<?xml version=”1.0” encoding=”UTF-8”?>

<Person>

<Name>Erwin van der Koogh</Name>

<Address>12 Lower Hatch Street</Address>

<City>Dublin</City>

<Country>Ireland</Country>

<Phone>555-5555</Phone>

</Person>

04_2344 Ch 03 5/14/02 11:30 AM Page 44

45Core JXTA Design Principles

Even if you’ve never seen XML, you probably recognize the example XML
document as the contact information for a person named Erwin van der
Koogh. From the example, you might guess at some of the rules of XML as
follows:

n Each piece of information is encapsulated between a beginning and an
end tag (such as <Name></Name>).

n The name of a tag specifies the type of content contained by the tags.
n Tags can be nested to form hierarchies that further structure the data in a

meaningful way.

The only piece of information that might be puzzling is the first line.The first
line specifies that the document is formatted using the rules set out by the
XML 1.0 standard and that the document is encoded using UTF-8.

This example is straightforward. However, you might ask yourself,“What if
Erwin has more than one phone number?”To further structure the data, an
XML document can contain any number of the same type of element and can
augment the elements with attributes that distinguish the elements, as shown
in Listing 3.2.

Listing 3.2 An Expanded XML Example

<?xml version=”1.0” encoding=”UTF-8”?>

<Person>

<Name>Erwin van der Koogh</Name>

<Address>12 Lower Hatch Street</Address>

<City>Dublin</City>

<Country>Ireland</Country>

<Phone Type=”Home”>555-5555</Phone>

<Phone Type=”Work”>555-1234</Phone>

</Person>F

The addition of the Type attribute to the Phone element tells you that 555-5555
corresponds to Erwin’s home phone number and that 555-1234 corresponds to
his work phone number.

More formal XML documents might use DTDs to define the following:
n Which tags are valid for a document
n How many times a specific tag might occur
n The order of the tags
n Required and optional attributes
n Default attribute values

04_2344 Ch 03 5/14/02 11:30 AM Page 45

46 Chapter 3 Introducing JXTA P2P Solutions

When an XML document implements the rules specified by a DTD, the XML
document is said to be valid.When an XML document doesn’t use a DTD
but otherwise follows the rules of XML, it is said to be well formed. For sim-
ple applications of XML, it is usually enough that documents are well formed,
eliminating the overhead required to check that a document complies with a
DTD.

That, in a nutshell, is about all the XML you need to know or understand
to comprehend the XML used by JXTA.Although XML supports many other
wonderful capabilities, understanding these capabilities isn’t necessary to under-
stand JXTA’s use of XML. For more information on XML, see Appendix B,
“Online Resources,” for the location of the XML standard and other XML
resources.

JXTA Advantages and Disadvantages
JXTA provides a far more abstract language for peer communication than pre-
vious P2P protocols, enabling a wider variety of services, devices, and network
transports to be used in P2P networks.The employment of XML provides a
standards-based format for structured data that is well understood, well sup-
ported, and easily adapted to a variety of transports. XML also has the advan-
tage that it’s a human-readable format, making it easy for developers to debug
and comprehend. So far, JXTA seems to have done everything right.Well,
maybe not.

One important element that JXTA does not attempt to address is how ser-
vices (other than the core services) are invoked. Several standards exist for
defining service invocation, such as the Web Services Description Language
(WSDL), but none has been specifically chosen by the JXTA Protocols
Specification. JXTA provides a generic framework for exchanging information
between peers, so any mechanism, such as WSDL, could potentially be used
via JXTA to exchange the information required to invoke services.

Several other arguments arise against the flexibility that the designers of
JXTA infused throughout the JXTA Protocols Specification.Although JXTA’s
use of XML specifies all aspects of P2P communication for any generic P2P
application, JXTA might not be suited to a specific standalone P2P applica-
tion. In an individual application, the network overhead of XML messaging
might be more trouble than it’s worth, especially if the application developer
has no intention of taking advantage of JXTA’s capabilities to incorporate
other P2P services into the application.

04_2344 Ch 03 5/14/02 11:30 AM Page 46

47Core JXTA Design Principles

Critics of JXTA point out that the platform’s abstraction of the network
transport is another potential area of excess. If most P2P applications today
rely on the Transport Control Protocol (TCP) to provide a network transport,
why does JXTA go to such lengths to avoid tying the protocols to a specific
network transport? Why not specify TCP as the assumed network transport
and eliminate the overhead?

All these points highlight the need for developers to balance flexibility with
performance when implementing their P2P applications. JXTA might not be
the best or most efficient solution for implementing a particular P2P applica-
tion. However, JXTA provides the most well-rounded platform for producing
P2P applications that have the flexibility required to grow in the future.The
capability to leverage other P2P services and enable widespread development
of P2P communities is the core value of the JXTA platform.

How Is JXTA Different from Jini or .NET?
The promise of interconnecting any type of device over any type of network
might sound familiar to followers of Sun’s Jini technology.Although there are
some similar goals, Jini relies exclusively on the Java platform for its function-
ality, whereas JXTA has no dependence on a particular programming language.
Unlike JXTA, Jini uses a centralized server to locate services on the network
and relies on Remote Method Invocation (RMI) and object serialization for
communication with remote devices. JXTA relies on XML rather than object
serialization to exchange structured data and discovers services across all peers
on the P2P network.

The Web Services aspects of Microsoft’s .NET platform are heavily infused
with XML, but the use of XML alone doesn’t make them comparable.
Fundamentally, JXTA and .NET have completely different purposes, with
.NET focusing more on the traditional client/server architecture of service
delivery.Although .NET technology could form the foundation of a P2P
application, creating a full P2P solution with .NET would require extra work
on the part of the developer. Developing a P2P solution using .NET would
require a developer to specify all the core P2P interactions, such as peer dis-
covery.This solution would essentially involve recreating all the mechanisms
that are already defined by the JXTA protocols.

04_2344 Ch 03 5/14/02 11:30 AM Page 47

48 Chapter 3 Introducing JXTA P2P Solutions

Introducing the JXTA Shell
Rather than try to explain JXTA in the abstract, what better way to start to
understand JXTA than seeing the technology in action? To do this, the
remainder of this chapter guides you through using the JXTA Shell.

The JXTA Shell is a demo application built on top of the JXTA platform
that allows users to experiment with the functionality made available through
the Java reference implementation of the JXTA protocols.The JXTA Shell
provides a UNIX-like command-line interface that allows the user to perform
P2P operations by manipulating peers, peer groups, and pipes using simple
commands.

Before You Install the JXTA Shell
To make the installation easier, you should already have a Java Run-Time
Environment (JRE), version 1.3 or later, on your computer.To test whether
you have a JRE already installed, go to the command prompt and type

java –version

If you have an existing JRE, you will see version information from the run-
time of this form:

java version “1.3.1_01”
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_01)
Java HotSpot(TM) Client VM (build 1.3.1_01, mixed mode)

If you don’t see this type of output, or if your version is lower that 1.3, you
need to install a version 1.3 or higher JRE.

You can download a version of the JXTA Shell installer for most platforms
with a standalone JRE included. However, if you intend to try the example
code in this book’s later chapters, you should install the Java 2 SDK (which
includes a JRE) instead of a standalone JRE.The Java 2 SDK for most
major platforms, including Solaris, Linux, and Windows, is available from
www.javasoft.com/j2se/.

For developers using the Mac platform, the latest Java environment can be
downloaded from www.apple.com/java/ but is available only for the Mac OS X
platform.

Obtaining and Installing the JXTA Shell
The JXTA Shell application can be obtained from either the Project JXTA
web site as a set of prebuilt binaries or from the Project JXTA source control
system as a set of source files.

04_2344 Ch 03 5/15/02 11:13 AM Page 48

49Introducing the JXTA Shell

To avoid the extra work required to build the JXTA Shell from source
code, these experiments use the prebuilt JXTA Shell binaries that come with the
JXTA demo applications.To download the JXTA demo installer that includes
the JXTA Shell binaries, go to download.jxta.org/easyinstall/install.html.

Installing the JXTA demo applications also installs the latest stable build of
the JXTA platform, packaged as a set of Java Archive (JAR) files. Unless you’re
interested in working with the latest experimental (and potentially unstable)
version available from the Project JXTA CVS repository, these archives are all
that’s required to build new JXTA solutions in Java.The latest JXTA build at
the time of writing was build 47b, built on January 25, 2002.

The installation procedure is slightly different for each operating system.
The following sections describe the installation procedure for various operat-
ing systems.

Installing the JXTA Shell for Windows

To install the JXTA demo applications for the Windows platform, follow these
steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. If you already have a version 1.3 or later JRE installed on your machine,
download the Windows Without Java VM installer; otherwise, download
the Windows Includes Java VM installer.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open Windows Explorer and go to the
folder where you stored the downloaded installer.

5. Run the installer. It should be called either JXTAInst.exe or
JXTAInst_VM.exe, depending on whether you chose the installer that
includes the JVM.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (C:\Program Files\JXTA_Demo).
Click Install.

04_2344 Ch 03 5/15/02 11:13 AM Page 49

50 Chapter 3 Introducing JXTA P2P Solutions

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Solaris, Linux, and UNIX

To install the JXTA demo applications for the Windows platform, follow these
steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. If you already have a version 1.3 or later JRE installed on your machine,
download the Without Java VM installer for your platform; otherwise,
download the Includes Java VM installer for your platform.The UNIX
platform install does not have a version that includes a standalone JRE,
so if you don’t already have a JRE, you must download and install one
first.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using sh ./JXTAInst.bin, replacing JXTAInst.bin with the
name of the file that you downloaded. It should be called JXTAInst.bin,
JXTAInst_Sol_VM.bin, or JXTAInst_LNX_VM.bin, depending on which version
you chose to download.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

04_2344 Ch 03 5/14/02 11:30 AM Page 50

51Introducing the JXTA Shell

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Other Java-Supported Platforms

To install the JXTA demo applications for any other platform that supports
Java, you can download a Java-based installer. However, you must already have
a JRE installed on your machine.To install the JXTA demo applications for a
Java-enabled platforms, follow these steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. Download the Other Java-Enabled Platforms version of the JXTA Shell
installer.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using java –classpath JXTA_Demo.zip install.

6. Click Next to dismiss the Introduction dialog box.

7. The installer display the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (usually
C:\Program Files\JXTA_Demo or ~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

The Installation Directory Structure
When the installation is complete, the directory structure that’s shown in
Figure 3.3 appears.

04_2344 Ch 03 5/14/02 11:30 AM Page 51

52 Chapter 3 Introducing JXTA P2P Solutions

Figure 3.3 The installation directory structure.

(JXTA Install) is the installation directory that you specified to the installer.The
lib subdirectory contains the JARs for the JXTA platform and the demo
applications, and the Shell subdirectory contains the executable to start the
Shell application.After the Shell is executed, the Shell subdirectory also holds
a cache of configuration information and discovered peers and resources.

The InstantP2P directory contains another demo application that you do
not use here.The UninstallerData directory contains the executable required to
uninstall the JXTA demo applications.

Running the JXTA Shell
To start the JXTA Shell, follow the instructions provided at the end of the
installation process.

On Windows, start the application by clicking Start, Programs, JXTA, JXTA
Shell.

On other platforms, execute the script provided by the installer to start the
application:

1. Open a command shell.

2. Go to the directory location that you specified for the JXTA Shell
during the installation.

3. Go to the Shell subdirectory.

4. Execute the shell.exe or the shell.sh script.

Instant P2P

(JXTA Install)

lib

Shell

UninstallerData

04_2344 Ch 03 5/14/02 11:30 AM Page 52

53Running the JXTA Shell

Alternatively, you can invoke the Shell application directly using this command
from the Shell subdirectory of the JXTA installation:

C:\Program Files\JXTA_Demo\Shell>java -classpath ..\lib\jxta.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\jxtasecurity.jar;
..\lib\cryptix-asn1.jar;..\lib\cryptix32.jar;..\lib\minimalBC.jar;
..\lib\jxtaptls.jar net.jxta.impl.peergroup.Boot

On non-Windows platforms, you need to change the command given to
match the directory and environment variable separator characters used by
your platform. On Solaris, Linux, and UNIX, use / instead of \, and :
instead of ;.

Configuring the Shell
The first time you execute the application, you are presented with a screen
requesting configuration information, as shown in Figure 3.4.

Figure 3.4 The basic configuration screen.

04_2344 Ch 03 5/14/02 11:30 AM Page 53

54 Chapter 3 Introducing JXTA P2P Solutions

The user interface that appears, called the Configurator, is used by the refer-
ence implementation to configure the JXTA platform before starting the
JXTA platform.To configure the JXTA platform using the Configurator,
follow these steps:

1. Enter a name for your peer in the Peer Name text field.

2. Go to the Security tab.

3. Enter a username in the Secure Username text field.

4. Enter a password in the Password text field, and enter the same password
in the Verify Password text field. Be sure to note the username and pass-
word that you enter because they will be required each time you start
the JXTA platform in the future.

5. Click OK.

After you click OK, the JXTA platform starts and connects to the network.
The time that it takes to start the JXTA platform varies with speed of your
network connection, but it should take less than 30 seconds, at the most.
Assuming that you have a simple network configuration, the Shell should
start up and display the screen that’s shown in Figure 3.5.

Figure 3.5 The JXTA Shell user interface.

04_2344 Ch 03 5/14/02 11:30 AM Page 54

55Running the JXTA Shell

To confirm that your client is correctly connected to the network, enter the
rdvstatus command at the JXTA prompt:

JXTA>rdvstatus

If the Shell is correctly configured and managed to locate a rendezvous server,
the rdvstatus command returns a similar result to the one given in Listing 3.3.

Listing 3.3 Results of the rdvstatus Command

Rendezvous Connection Status:

Is Rendezvous : [false]

Rendezvous Connections :

Rendezvous name: JXTA.ORG 237

Rendezvous name: JXTA.ORG 235

Rendezvous name: ensd_1

Rendezvous Disconnections :

[None]

This output shows that the Shell has correctly connected to three rendezvous
peers, named JXTA.ORG 237, JXTA.ORG 235, and ensd_1. If you receive this response,
your Shell peer is correctly configured and connected to the network; if you
don’t receive this response, see the next section to troubleshoot your
configuration.

Troubleshooting Your Peer’s Configuration
Listing 3.4 shows the output of the rdvstatus command when the client has
failed to locate any rendezvous peers and cannot locate other peers.

Listing 3.4 No Visible Rendezvous Peers

Rendezvous Connection Status:

Is Rendezvous : [False]

Rendezvous Connections :

continues

04_2344 Ch 03 5/14/02 11:30 AM Page 55

56 Chapter 3 Introducing JXTA P2P Solutions

[None]

Rendezvous Disconnections :

[None]

In some cases, it might take a few moments to see the rendezvous peers due to
network latency.Wait a few moments before running rdvstatus again to see if
the problem is simply high network latency. If the rdvstatus still shows no ren-
dezvous peers, try using this command:

JXTA>peers –r

Wait a few moments and try the rdvstatus command again. If rdvstatus still
fails to show any rendezvous peers, several possible reasons exist:

n No rendezvous peers are available.
n Your firewall configuration is preventing you from communicating with

a rendezvous peer.
n You’re not connected to a network.

If you aren’t connected to a network, you can still use the Shell to experiment
with the JXTA platform by following the instructions in the later section,
“Using the JXTA Shell Without a Network Connection.”

Finding Available Rendezvous Peers

First, confirm that rendezvous peers are available on the network:

1. Force the Shell to display the configuration screen the next time you
start the Shell by typing the following from within the Shell:

JXTA>peerconfig

If you don’t invoke this command before exiting the Shell, the Shell
simply uses cached configuration information the next time it starts,
with the same results.The peerconfig command will return this:

peerconfig: Please exit and restart the jxta shell to

reconfigure !!!!!

2. Follow the instructions and exit the shell by using the following
command:

JXTA>exit

Listing 3.4 Continued

04_2344 Ch 03 5/14/02 11:30 AM Page 56

57Running the JXTA Shell

3. Restart the Shell application the same way you started it the first time.
This time you are prompted to enter only the username and password
that you entered the first time in the Configurator. Enter the username
and password, and hit Enter.

4. When the configuration screen appears this time, go to the Rendezvous/
Relays tab and click Download Relay and Rendezvous Lists.The Load
list from URL dialog box appears. (See Figure 3.6.)

Figure 3.6 The Download Rendezvous/Router List dialog box.

To find rendezvous peers to use for peer discovery, the JXTA Shell attempts to
download a list of available rendezvous peer IP addresses.This is a convenient
mechanism for finding rendezvous peers, although you could just as easily
enter the IP address and port of a rendezvous peer manually in the
Rendezvous Settings section of Rendezvous/Router tab.

Using a web browser, go to the location shown in the Http rendez-vous list
text field—by default, this value is as follows:

http://rdv.jxtahosts.net/cgi-bin/httpRdvsProd.cgi

04_2344 Ch 03 5/14/02 11:30 AM Page 57

58 Chapter 3 Introducing JXTA P2P Solutions

This site returns a list of the production rendezvous peers run by Project
JXTA.These peers are running the latest stable release of the JXTA platform,
which should be the same as the platform version provided with the JXTA
demo application installer. If the page returned is empty, no known production
rendezvous peers are available from Project JXTA. Most likely, this is only a
temporary situation occurring during an update to the rendezvous peer soft-
ware.Try again later, or see the next section,“Using the JXTA Shell Without a
Network Connection” for further instructions.

If the URL returns a list of rendezvous peers, you should test to make sure
that at least one rendezvous peer in the list is operating at the specified IP
address and port.To do this, you can use a web browser to request an
acknowledgement from the rendezvous peer. For example, if the rendezvous
peer is located at IP address 63.81.220.34 and is listening on port 9700, point-
ing a web browser to http://63.81.220.34:9700/ping/ should return a blank web
page.You can view the source of the web page to confirm that the result is a
web page, not an error page.

If you have found a working rendezvous peer, the problem is mostly likely
due to the configuration of a firewall between your machine and the outside
network. Go to the Basic tab, check the Use a Proxy Server option, and enter
the location of a HTTP proxy on your local network.You can obtain the
location of your network’s HTTP proxy by copying the proxy settings from
your web browser or talking to your network administrator.The Shell should
now show rendezvous peers when you start the application and run the
rdvstatus command.

Using the JXTA Shell Without a Network Connection

If, for some reason, you don’t have network access, you can still explore JXTA
using the Shell and the experiments in the rest of this book.The Shell applica-
tion is a peer like any other on a JXTA P2P network, so all the standard com-
mands to manipulate peers, peer groups, and pipes will work exactly the same,
independent of the location of the peer. However, you will be able to see,
manipulate, and communicate only with your own peer.

If you want to experiment with the JXTA Shell in a more realistic environ-
ment, you can run two instances of the Shell on the same machine, using one
of the Shell instances as a rendezvous peer. Due to the way the Java reference
implementation of the JXTA platform implements its cache of configuration
information, you need to make a copy of the Shell directory to prevent clashes
between the instances of the Shell:

1. Force the Shell to display the configuration dialog box the next time it
starts using the peerconfig command from within the Shell.

2. Exit the Shell using exit.

04_2344 Ch 03 5/14/02 11:30 AM Page 58

59Running the JXTA Shell

3. Make a copy of the Shell subdirectory (located underneath the JXTA
installation directory) called Shell2 at the same level as the Shell
subdirectory.

Before attempting to configure each Shell, you should know your machine’s
local IP address.

On Windows, follow these steps:

1. Open a command prompt.

2. Invoke the ipconfig command.

3. Note the IP address specified in the output from ipconfig.

You should also ensure that you can ping your own IP address because some
internal networks might not allow you to see your own IP address.To check if
you can see your own IP address, follow these steps:

1. Open a command prompt.

2. Invoke the ping command.

3. Ensure that the response doesn’t indicate that the destination host is
unreachable.

If you cannot ping the IP address returned by ipconfig, you should use the
localhost IP address 127.0.0.1 instead of the IP address returned by ipconfig.
On other operating systems, consult your operating system’s help system to
learn how to determine your machine’s IP address and ping an IP address.

To start one Shell as a rendezvous peer, open a command prompt and
follow these steps:

1. Go to the Shell subdirectory.

2. Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

3. Enter a name for the peer.

4. Go to the Rendezvous/Relays tab.

5. Remove each TCP and HTTP rendezvous server and each HTTP relay
server.

6. Deselect Use a Relay in the HTTP Relay Settings section.

7. Select Act as a Rendezvous.

8. Go to the Advanced tab.

9. Deselect Enabled from the HTTP Settings section.

10. Select Enabled and Manual from the TCP Settings section.

04_2344 Ch 03 5/14/02 11:30 AM Page 59

60 Chapter 3 Introducing JXTA P2P Solutions

11. Select Always Manual, and note the IP address and port number (default
9701) that has been automatically set. If no IP address has been set, enter
the IP address that you obtained from your operating system.

12. Click OK.

13. Enter your username and password when prompted, and hit Enter.

To start a second Shell to act as a simple peer using the rendezvous peer that
you just created, open a second command prompt and do the following:

1. Go the Shell2 subdirectory that you created.

2. Remove the pse subdirectory.This directory contains the personal secu-
rity settings protected by the password entered in the Configurator.

3. Remove the PlatformConfig file.This file contains configuration informa-
tion for your peer, and it must be removed to prevent the second
instance from reusing the peer’s unique ID.

4. Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

5. Enter a name for the peer, preferably one that is different from the one
you used for the rendezvous peer.

6. Go to the Rendezvous/Relays tab.

7. Remove each TCP and HTTP rendezvous server and each HTTP relay
server.

8. Deselect Use a Relay in the HTTP Relay Settings section.

9. Enter the IP address and port that you noted in the first shell as a TCP
Rendezvous, and add it to the list using the + button.

10. Go to the Advanced tab.

11. Select Enabled and Manual from the TCP Settings section.

12. Select Always Manual, and enter your IP address and a different port
number (say, 9702).

13. Deselect Enabled from the HTTP Settings section.

14. Go the Security tab.

15. Enter a username and password.

16. Click OK.

You now have a simple peer configured to use the first instance of the Shell
as a rendezvous peer, and you can conduct P2P communication between the
two peers as normal.

04_2344 Ch 03 5/14/02 11:30 AM Page 60

61Navigating the JXTA Shell

Navigating the JXTA Shell
The JXTA Shell presents a simple command-line user interface similar to
UNIX’s interface. Simple text commands are entered at the JXTA prompt:

JXTA>

Like most UNIX shells, the Shell is case-sensitive and maintains a history of
previously issued commands.At any time, you can see a complete list of the
previously issued commands by using the history command:

JXTA>history
0 man
1 history

At any time, you can scroll through the commands using the up and down
arrow keys, invoking previous commands without retyping the command.

Learning About Shell Commands
The JXTA Shell resembles a UNIX shell in many ways, and several of the
commands are available within the Shell.To learn what commands are avail-
able from the Shell, you can use the man command by itself to print a list of all
available commands, shown in Table 3.1:

JXTA>man

Table 3.1 Built-In Shell Commands

Command Description

cat Concatenates and displays a Shell object
chpgrp Changes the current peer group

clear Clears the shell’s screen

env Displays environment variable

exit Exits the Shell

exportfile Exports to an external file

get Gets data from a pipe message

grep Searches for matching patterns

groups Discovers peer groups

help Gives instructions on where to find help

history Shows the history of Shell commands executed

importfile Imports an external file

instjar Installs JAR files containing additional Shell commands

continues

04_2344 Ch 03 5/14/02 11:30 AM Page 61

62 Chapter 3 Introducing JXTA P2P Solutions

Command Description

join Joins a peer group

leave Leaves a peer group

man Online help command that displays information about a
specific Shell command

mkadv Makes an advertisement

mkmsg Makes a pipe message

mkpgrp Creates a new peer group

mkpipe Creates a pipe

more Pages through a Shell object

peerconfig Forces reconfiguration the next time the Shell is started

peerinfo Gets information about peers

peers Discovers peers

put Puts data into a pipe message

rdvserver Runs the peer as a standalone rendezvous server

rdvstatus Displays information about rendezvous

recv Receives a message from a pipe

search Discovers JXTA advertisements

send Sends a message into a pipe

set Sets an environment variable

setenv Sets an environment variable

sftp Sends a file to another peer

share Shares an advertisement

Shell Forks a new JXTA Shell command interpreter

Sql Issues an SQL command (not implemented)

Sqlshell Acts as the JXTA SQL Shell command interpreter

Talk Talks to another peer

Uninstjar Uninstalls JAR files previously installed with instjar

Version Returns the Shell version information

wc Counts the number of lines, words, and characters
in an object

who Displays credential information

whoami Displays information about a peer or a peer group

Table 3.1 Continued

04_2344 Ch 03 5/14/02 11:30 AM Page 62

63Navigating the JXTA Shell

The man command also enables you to learn about the purpose and options for
various commands available within the Shell. For example, to find out more
about the rdvstatus command, use this command:

JXTA>man rdvstatus

This pulls up the usage information for the rdvstatus command, as shown in
Listing 3.5.

Listing 3.5 Usage Information for rdvstatus

NAME

rdvstatus - display information about rendezvous

SYNOPSIS

rdvstatus [-v]

[-v] print verbose information

DESCRIPTION

rdvstatus displays information about the peer

rendezvous. The command shows how many rendezvous peers

the peer is connected to.

OPTIONS

-v print verbose information

EXAMPLE

JXTA>rdvstatus

SEE ALSO

whoami peers

Environment Variables
The Shell provides environment variables to store pieces of information in the
Shell for later use.You can see the defined environment variables using the env
command, as shown in Listing 3.6.

04_2344 Ch 03 5/14/02 11:30 AM Page 63

64 Chapter 3 Introducing JXTA P2P Solutions

Listing 3.6 The Shell Environment Variables

JXTA>env

stdin = Default InputPipe (class net.jxta.impl.shell.ShellInputPipe)

SHELL = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

History = History (class net.jxta.impl.shell.bin.history.HistoryQueue)

parentShell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

Shell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

stdout = Default OutputPipe (class net.jxta.impl.pipe.NonBlockingOutputPipe)

consout = Default Console OutputPipe (class

net.jxta.impl.shell.ShellOutputPipe)

consin = Default Console InputPipe (class

net.jxta.impl.shell.ShellInputPipe)

stdgroup = Default Peer Group (class net.jxta.impl.peergroup.StdPeerGroup)

These environment variables are set by default to handle the input, output, and
basic functionality of the Shell. More variables can be defined by the output of
commands, each corresponding to an object, data, or cached advertisement
accessible within the Shell’s environment.

Importing and Exporting Environment Variables

In addition to working with environment variables within the Shell, environ-
ment variables can be imported and exported using the importfile and
exportfile commands.The commands enable you to import XML or plain
text files into Shell environment variables. By default, the working directory
for these commands is set to the directory where you executed the Shell,
usually the Shell subdirectory of the JXTA installation directory.

To demonstrate the importfile and exportfile commands, follow these steps:

1. Create a text file called input.txt containing some text in the Shell sub-
directory under the JXTA installation directory.

2. Import the text of the file into an environment variable called test using
importfile –f input.txt test.

You should see a new environment variable named test in the list of variables
returned by the env command. Rather than trying to find a variable in the
output of env, you can use the cat command to view the contents of the test
variable, as shown in Listing 3.7:

JXTA>cat test

04_2344 Ch 03 5/14/02 11:30 AM Page 64

65Navigating the JXTA Shell

Listing 3.7 The Imported Environment Variable

<?xml version=”1.0”?>

<ShellDoc>

<Item>

This is some test text.

</Item>

</ShellDoc>

The cat command knows how to render several types of environment vari-
ables to the standard output of the Shell, including the XML document
produced by importing input.txt with the importfile command.The test
environment variable can now be exported to a file called output.txt using this
command:

JXTA>exportfile –f output.txt test

A file called output.txt containing the contents of the test variable appears in
the Shell subdirectory of the JXTA installation.

Although the usefulness of this functionality might seem trivial now,
remember that all functionality in JXTA is expressed in terms of XML-based
advertisements.As you’ll see, having the capability to manipulate environment
variables is central to the power of the JXTA Shell as a tool for experimenting
with the JXTA platform.

Combining Commands
In a manner similar to UNIX, the JXTA Shell allows users to string together
simple commands to perform complex functionality.The | operator allows the
output of a command on the left of the operator to be used as input into the
command on the right.

Consider a simple example:The output of the man command is a bit too
long to read without scrolling.The more command breaks a piece of input text
into screen-size chunks.You can combine these two commands by typing the
following:

JXTA>man | more

This pipes the output of the man command as input into the more command,
allowing you to view the man output in screen-size chunks that you can move
between by hitting the Enter key. Similarly, you could count the number of
characters in the man output using this command:

JXTA>man | wc –c

04_2344 Ch 03 5/14/02 11:30 AM Page 65

66 Chapter 3 Introducing JXTA P2P Solutions

This pipes the output of the man command as input into the wc command,
which counts the number of characters in the input when the –c option is set.

Manipulating Peers
The JXTA Shell provides basic capabilities to discover peers and obtain peer
information.Working with a peer involves working with a Peer Advertisement
that describes the peer and its services.

Learning About the Local Peer
Before learning about other peers, you need to know a bit about your own
local peer:

JXTA>whoami

The whoami command returns the peer information for the local peer run by
the JXTA Shell given in Listing 3.8.

Listing 3.8 Results of the whoami Shell Command

<Peer>MyPeer</Peer>

<Keywords>NetPeerGroup by default</Keywords>

<PeerId>urn:jxta:uuid-59616261646162614A78746150325033855A703D4E614D

B7B54A9BE583FFCD4C03</PeerId>

<TransportAddress>tcp://asterix:9701/</TransportAddress>

<TransportAddress>http://JxtaHttpClientuuid-59616261646162614A787461

50325033855A703D4E614DB7B54A9BE583FFCD4C03/</TransportAddress>

This short version of the local peer information shows only the basic peer
information.A longer version that displays the whole Peer Advertisement
stored in environment variable peerX can be viewed using this command:

JXTA>cat peerX

You can find the environment variable holding your Peer Advertisement by
looking for your peer’s name in the results of the peers command.

I won’t go into the details of the Peer Advertisement at this point. I will
provide a complete description of the Peer Advertisement when we explore
the Peer Discovery Protocol in the next chapter. For now, it’s enough to
notice some of the information provided by the advertisement:

n A name for the peer
n A unique identifier for the peer

04_2344 Ch 03 5/14/02 11:30 AM Page 66

67Manipulating Peers

n Services provided by the peer
n Transport endpoint details

The services provided by the peer are called peer services; these are services
offered only by the peer. If the peer disconnects from the network, these ser-
vices are unavailable to other peers.

Finding Peers
Before your peer can request services from a peer, it needs to know the exis-
tence of the peer, what services the peer offers, and how to contact the peer
on the network.To find peers that your local peer is already aware of, execute
the peers command given in Listing 3.9.

Listing 3.9 Results of the peers Shell Command

JXTA>peers

peer0: name = rdv-235

peer1: name = rdv-237

peer2: name = dI_lab1

peer3: name = dI_lab_Tokyo

peer4: name = MyPeer

Each Peer Advertisement is made available in the Shell environment via a vari-
able with a name of the form peerX, where X is an integer.At this point, your
peer is aware of only local or cached Peer Advertisements for peers that have
already been discovered; no discovery of remote peers has yet been performed.
Caching Peer Advertisements reduces the amount of discovery that a peer
might have to perform and can be used by simple peers as well as rendezvous
peers to reduce network traffic.

Each entry returned by the peers command shows the simple peer name for
a peer and the name of an environment variable storing the Peer Advertise-
ment for that peer. In the previous example, the peer4 environment variable
stores the Peer Advertisement for the local peer.You can view the Peer
Advertisement using the cat command:

JXTA>cat peer4

To discover other peers on the network, you need to send a peer discovery
message using the following:

JXTA>peers –r
peer discovery message sent

04_2344 Ch 03 5/14/02 11:30 AM Page 67

68 Chapter 3 Introducing JXTA P2P Solutions

This sends a discovery message immediately to all the rendezvous peers that
your peer is aware of on the network.The rendezvous peers forward the
request to other rendezvous and simple peers that it is aware of on the net-
work.The rendezvous peers might potentially reply using cached Peer
Advertisements to improve the response time and reduce network traffic across
the P2P network.The peers command returns to the JXTA prompt immedi-
ately, and the discovered peers can be viewed using the peers command, as
shown in Listing 3.10.

Listing 3.10 The Updated List of Discovered Peers

JXTA>peers

peer0: name = cajunboy

peer1: name = fds

peer2: name = Rdv-235

peer3: name = domehuhu

peer4: name = MyPeer

peer5: name = Rdv-236

...

The results of the peer discovery might not be immediately viewable with the
peers command. JXTA provides no guarantees about the time required to
receive a response to a discovery message; it is possible that responses might
never return.The delay depends on a variety of factors, including the speed of
your connection to other peers and the network configuration (firewall,
NAT).

Flushing Cached Peer Advertisements
At some point, it might be appropriate to remove the Peer Advertisements
from the local cache, eliminating the local peer’s knowledge of other peers
on the network.To flush the local cache of Peer Advertisements, use this
command:

JXTA>peers –f

The only remaining Peer Advertisement will be that of your own local peer:
JXTA>peers
peer0: name = MyPeer

To find peers on the network, you need to send another peer discovery mes-
sage to the network using the peers –r command to populate the local cache
of Peer Advertisements.

04_2344 Ch 03 5/14/02 11:30 AM Page 68

69Manipulating Peer Groups

Manipulating Peer Groups
In the same manner that you just managed to discover and manipulate peer
information, you can discover and manipulate peer groups.Working with a
peer group involves working with a Peer Group Advertisement that describes
the peer group and its services.

Learning About the Current Peer Group
The whoami command permits you to examine the peer group information for
the local peer’s current peer group. In the Shell, the peer can manipulate only
one peer group at a time. For convenience, this peer group is set as the current
peer group in an environment variable called stdgroup.To retrieve information
about the current peer group, use whoami –g to obtain the peer group informa-
tion in a form similar to this:

<PeerGroup>NetPeerGroup</PeerGroup>
<Description>NetPeerGroup by default</Description>
<PeerGroupId>urn:jxta:jxta-NetGroup</PeerGroupId>

This peer group information shows that the peer is currently a part of the Net
Peer Group. By default, all peers are members of the Net Peer Group, thereby
allowing all peers on the network to see and communicate with each other.

The peer group information returned by whoami –g is a condensed version
of the information provided by the peer group’s advertisement.A Peer Group
Advertisement also contains information on the set of services that the peer
group makes available to its members.These services are called peer group ser-
vices to distinguish them from peer services. Peer group services can be imple-
mented by several members of a peer group, enabling redundancy. Unlike a
peer service, a peer group service remains available as long as one member of
the peer group is connected to the P2P network and is providing the service.

Finding Peer Groups
In a similar manner to viewing the known peers on the network, you can
view the known peer groups using this command:

JXTA>groups

As with the peers command, only those peer groups that have been discovered
in the past and have had their Peer Group Advertisement cached appear in the
list when this command is executed in an instance of the Shell.Although all
peers belong to the Net Peer Group and this group is always present, the Net
Peer Group does not show up in the results from the groups command.

04_2344 Ch 03 5/14/02 11:30 AM Page 69

70 Chapter 3 Introducing JXTA P2P Solutions

To find peer groups available on the P2P network, a peer group discovery
request must be made to the network:

JXTA>groups –r
group discovery message sent

Using the groups command again returns a list of groups discovered on the
network:

JXTA>groups
group0: name = SomeGroup
group1: name = AnotherGroup
...

As with peer discovery, the response to a group discovery message might not
be immediate, if a response is obtained at all. Each of the cached Peer Group
Advertisements is available in the environment as a variable with a name of
the form groupX, where X is an integer.The contents of the environment vari-
able can be viewed using the cat command:

JXTA>cat group0

This command displays the full Peer Group Advertisement instead of the con-
densed version returned by whoami –g.

Creating a Peer Group
A new peer group can be created from within the JXTA Shell in two ways: by
cloning the Net Peer Group Peer Group Advertisement or by creating a new
Peer Group Advertisement from scratch.

Cloning The Net Peer Group

To create a new peer group, use the mkpgrp command and provide a name for
your peer group:

JXTA>mkpgrp MyGroup

Used this way, the mkpgrp command makes a new peer group by cloning the
existing Net Peer Group peer group.

Creating a New Peer Group Advertisement

Instead of cloning the existing Net Peer Group, you can create a new Peer
Group Advertisement with a given name using this command:

JXTA>MyGroupAdvertisement = mkadv –g <name>

This form of the mkadv command creates a new Peer Group Advertisement by
cloning the current peer group. If you haven’t yet joined any groups, the cur-
rent peer group is the Net Peer Group, and the result is identical to using the

04_2344 Ch 03 5/14/02 11:30 AM Page 70

71Manipulating Peer Groups

mkpgrp command.Alternatively, you can import a saved Peer Group Advertise-
ment from a text file and use it to create the advertisement:

JXTA>importfile –f advertisement.txt MyDocument
JXTA>MyAdvertisement = mkadv –g –d MyDocument
JXTA>mkpgrp –d MyAdvertisement MyGroup

This set of commands imports a file called advertisement.txt, creates a Peer
Group Advertisement out of its contents, and uses them to create a new peer
group called MyGroup.

Note
Currently, the Shell ignores the MyGroup name for the peer group and uses the name from the Peer
Group Advertisement; this is a known bug with the current Shell implementation.

Joining a Peer Group
When your peer is aware of a peer group, either by creating one or by per-
forming peer group discovery, you must join the group before any communi-
cation as a part of that peer group can occur.To join a group whose Peer
Group Advertisement is stored in an environment variable called group1, use
the join –d command:

JXTA>join –d group1

The join command prompts you for an identity that you want to use on this
group:

Enter the identity you want to use when joining this peergroup (nobody)
Identity:

Identities assign credentials to users for accessing peer resources.The peer
group’s Membership service is responsible for defining accepted identities and
authenticating peers that want to join a group.

The join –d command sets the current peer group in the environment to
the most recently joined peer group. Issuing the join command again lists the
current known groups and their status:

JXTA>join
Unjoined Group : AnotherGroup
Joined Group : MyGroup (current)
Unjoined Group : SomeGroup

If you make another group called MyGroup2 and join it, the current peer group
changes to reflect MyGroup2 as the current peer group:

JXTA>join
Unjoined Group : AnotherGroup

04_2344 Ch 03 5/14/02 11:30 AM Page 71

72 Chapter 3 Introducing JXTA P2P Solutions

Joined Group : MyGroup
Joined Group : MyGroup2 (current)
Unjoined Group : SomeGroup

To move between peer groups, change the current shell peer group by issuing
the chpgrp command, as shown in Listing 3.11.

Listing 3.11 Changing the Current Peer Group

JXTA>chpgrp MyGroup

JXTA>join

Unjoined Group : AnotherGroup

Joined Group : MyGroup (current)

Joined Group : MyGroup2

Unjoined Group : SomeGroup

If you decide to leave a peer group, issue the leave command; your peer will
leave the current peer group, as shown in Listing 3.12.

Listing 3.12 Result of Leaving a Group

JXTA>leave

JXTA>join

Unjoined Group : AnotherGroup

Unjoined Group : MyGroup

Joined Group : MyGroup2

Unjoined Group : SomeGroup

After you leave a peer group, the current peer group is set to the Net Peer
Group.You must issue a chpgrp command to set the current peer group again.

Flushing Cached Peer Group Advertisements
Just as it might be appropriate to remove the Peer Group Advertisements
from the local cache, it might also be appropriate to remove peer group
advertisements from the local cache.To flush the local cache of Peer Group
Advertise-ments, thereby eliminating the local peer’s knowledge of peer
groups on the network, use this command:

JXTA>groups –f

To join a peer group on the network, you need to send another peer group
discovery message to the network using the groups –r command to populate
the local cache of Peer Group Advertisements.

04_2344 Ch 03 5/14/02 11:30 AM Page 72

73Manipulating Pipes

Manipulating Pipes
Pipes provide the basic mechanism for peers to share information with each
other. Pipes and pipe endpoints are abstractions of the underlying network-
transport mechanism responsible for providing network connectivity.
Communicating with other peers involves discovering pipes and endpoints,
binding to a pipe, and sending and receiving messages through the pipe.

Creating Pipes
To create a pipe, you must first create a Pipe Advertisement:

JXTA>MyPipeAdvertisement = mkadv –p

Using the cat command, you can view the newly created Pipe Advertisement,
as shown in Listing 3.13.

Listing 3.13 Viewing the New Pipe Advertisement

JXTA>cat MyPipeAdvertisement

<?xml version=”1.0”?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta=”http://jxta.org”>

<Id>

urn:jxta:uuid-59616261646162614E504720503250339C0C74ADD709

4CEC90EC9D4471DFED5304

</Id>

<Type>JxtaUnicast</Type>

</jxta:PipeAdvertisement>

When a peer has a Pipe Advertisement, defining a pipe from the Pipe
Advertisement is as simple as using these commands:

JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

This defines an input and an output pipe from the advertisement stored in the
MyPipeAdvertisement environment variable.

Creating a Message
Communication between an input and an output pipe relies on the capability
to form a message object to exchange. If you import a text file into the Shell,
you can package it inside a message:

JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

04_2344 Ch 03 5/14/02 11:30 AM Page 73

74 Chapter 3 Introducing JXTA P2P Solutions

The last line places the contents of the SomeData variable inside an element
called MyData, as shown in Listing 3.14.

Listing 3.14 The Newly Created Message

JXTA>cat MyMessage

Tag: MyData

Body:

<?xml version=”1.0”?>

<ShellDoc>

<Item>

This is some test text.

</Item>

</ShellDoc>

Sending and Receiving Messages
To demonstrate how simple it is to send a message using a pipe, you’re going
to send a message from the peer to itself.To send the message from the peer,
first define the input and output pipes:

JXTA>MyPipeAdvertisement = mkadv –p
JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

Next, import a file that will form the body of the message:
JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

Now send the message:
JXTA>send MyOutputPipe MyMessage

To receive the message from the pipe, use this command:
JXTA>ReceivedMessage = recv -t 5000 MyInputPipe

This command attempts to receive a message from the MyInputPipe input pipe
and store it in the ReceivedMessage variable.The command attempts to receive a
message for only five seconds before timing out.

If the attempt to receive a message is successful, the command returns the
following:

recv has received a message

04_2344 Ch 03 5/14/02 11:30 AM Page 74

75Talking to Other Peers

The data can be extracted from the received message, as shown in Listing 3.15.

Listing 3.15 Viewing the Received Message Data

JXTA>NewData = get ReceivedMessage MyData

JXTA>cat NewData

<?xml version=”1.0”?>

<ShellDoc>

<Item>

This is some test text.

</Item>

</ShellDoc>

If no message is available to be received, the Shell reports the following:
recv has not received any message

The Shell recognizes whether a pipe is not the appropriate type required to
send or receive a message.Attempting to send using an input pipe instead of
an output pipe results in an error:

JXTA>send MyInputPipe MyMessage
send: MyInputPipe is not an OutputPipe
java.lang.ClassCastException: net.jxta.impl.pipe.InputPipeImpl

Similarly, attempting to receive using an output pipe instead of an input pipe
results in an error:

JXTA>inputMessage = recv -t 5000 outputPipe
wait: outputPipe is not an InputPipe
java.lang.ClassCastException: net.jxta.impl.pipe.NonBlockingOutputPipe

Talking to Other Peers
The talk command is a simple application written on top of the JXTA Shell
that allows you to talk to other peers.To do this, first create a talk advertise-
ment for a specific username:

JXTA>talk –register myusername

This has to be done only once as the platform caches the advertisement. Next,
start a talk listener daemon using this command:

JXTA>talk –login myusername

After this, you can talk to another user:
JXTA>talk –u myusername myfriendsusername

04_2344 Ch 03 5/14/02 11:30 AM Page 75

76 Chapter 3 Introducing JXTA P2P Solutions

This allows you to enter text messages that will be sent to the other talk user
myfriendsusername, as shown in Figure 3.7.You can even send a text message to
yourself using this command:

JXTA>talk –u myusername myusername

Figure 3.7 Using talk between two shell instances.

When you’re done talking for the session, use this command to shut down the
talk daemon:

JXTA>talk –logout myusername

Extending the Shell Functionality
The JXTA Shell is designed to be more than just a toy to explore the basic
building blocks of P2P technology.The Shell is designed to allow developers
to extend its functionality easily and incorporate new commands.All the core
commands that you’ve used so far are invoked dynamically, and any new com-
mands that a developer creates will be invoked the same way.

04_2344 Ch 03 5/14/02 11:30 AM Page 76

77Extending the Shell Functionality

A developer needs to follow a few simple rules to create a new command
for the Shell.To work in the Shell properly, a new command must do the
following:

n Extend the net.jxta.impl.shell.ShellApp class
n Implement the startApp and stopApp methods
n Be part of a subpackage of net.jxta.impl.shell.bin
n Exist in a subpackage of the same name as the command
n Be in a class of the same name as the command

A Simple Shell Command
Following these simple rules, you’ll now write a simple command to print the
name of the peer. Listing 3.16 creates a command called helloworld.

Listing 3.16 The helloworld Shell Command (helloworld.java)

package net.jxta.impl.shell.bin.helloworld;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

import net.jxta.peergroup.PeerGroup;

/**

* A simple example command for the JXTA Shell.

*/

public class helloworld extends ShellApp

{

/**

* The shell environment.

*/

private ShellEnv theEnvironment;

/**

* Invoked by the Shell to starts the command.

*

* @param args a set of arguments passed to the command.

* @return a status code indicating the success or failure

* of the command.

*/

continues

04_2344 Ch 03 5/14/02 11:30 AM Page 77

78 Chapter 3 Introducing JXTA P2P Solutions

public int startApp(String[] args)

{

println(“Starting command...”);

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup aPeerGroup = (PeerGroup) theShellObject.getObject();

// Check to see if there were any command arguments.

if ((args == null) || (args.length == 0))

{

// Print the peer name to the console.

println(“My peer name is “ + aPeerGroup.getPeerName());

}

else

{

println(“This command doesn’t support arguments.”);

// Return the ‘parameter error’ status code.

return ShellApp.appParamError;

}

// Return the ‘no error’ status code.

return ShellApp.appNoError;

}

/**

* Invoked by the Shell to stop the command.

*/

public void stopApp()

{

// Do nothing.

}

}

Listing 3.16 Continued

04_2344 Ch 03 5/14/02 11:30 AM Page 78

79Extending the Shell Functionality

As demanded by the rules of the Shell, the helloworld class is a part of the
net.jxta.impl.shell.bin.helloworld package and implements the startApp and
stopApp methods. In this simple example, the command retrieves an object rep-
resenting the current peer group using the stdgroup environment variable:

ShellObject theShellObject =
theEnvironment.get(“stdgroup”);

The ShellEnv object is the same store of environment objects that you’ve been
working with from inside the Shell throughout this chapter.The PeerGroup
object is retrieved from the wrapper ShellObject returned by ShellEnv:

PeerGroup aPeerGroup =
(PeerGroup) theShellObject.getObject();

Finally, the name of the peer in the peer group is printed to the console using
the Shell’s standard output:

println(“My peer name is “ +
aPeerGroup.getPeerName());

To make this command work with the Shell, compile the helloworld.java
source from the command line.To make life easier, place the source code in
the Shell subdirectory of the JXTA demo installation and compile it using the
following:

javac –d . –classpath ..\lib\jxta.jar;..\lib\jxtashell.jar helloworld.java

Now execute the Shell, making sure to include the current directory in the
classpath:

java -classpath .;..\lib\jxta.jar;..\lib\jxtashell.jar;..\lib\cms.jar;
..\lib\cmsshell.jar;..\lib\log4j.jar;..\lib\beepcore.jar;
..\lib\cryptix32.jar;..\lib\cryptix-asn1.jar;..\lib\jxtaptls.jar;
..\lib\jxtasecurity.jar;. net.jxta.impl.peergroup.Boot

The Shell starts up as usual, and you can now try your new command:
JXTA>helloworld
Starting command...
My peer name is MyPeer

Congratulations, you just created your first solution using JXTA! Although this
example doesn’t do much, it demonstrates how simple it is to build on the
JXTA platform to incorporate new functionality.

04_2344 Ch 03 5/14/02 11:30 AM Page 79

80 Chapter 3 Introducing JXTA P2P Solutions

Summary
This chapter provided a crash course on using the JXTA Shell. Most of the
details of JXTA, its protocols, and the Java reference implementation are
revealed in the following chapters. In the next chapter, you start examining the
JXTA platform in detail by looking at the Peer Discovery Protocol and its
components.Your familiarity with the JXTA Shell will come in handy by pro-
viding a framework for the examples, thereby reducing the amount of coding
required and allowing the examples to focus on the particulars of peer
discovery.

04_2344 Ch 03 5/14/02 11:30 AM Page 80

JXTA Protocols

II

4 The Peer Discovery Protocol

5 The Peer Resolver Protocol

6 The Rendezvous Protocol

7 The Peer Information Protocol

8 The Pipe Binding Protocol

9 The Endpoint Routing Protocol

10 Peer Groups and Services

05_2344 Part II 5/14/02 11:32 AM Page 81

05_2344 Part II 5/14/02 11:32 AM Page 82

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Discovery Protocol

4

AS DESCRIBED IN CHAPTER 2,“P2P CONCEPTS,” advertisements are the basic
unit of data exchanged between peers to provide information on available
services, peers, peer groups, pipes, and endpoints.With advertisements, the
problem of finding peers and all their different types of resources can be
reduced to a problem of finding advertisements describing those resources.

The Peer Discovery Protocol (PDP) defines a protocol for requesting
advertisements from other peers and responding to other peers’ requests for
advertisements.This chapter describes the format of the messages of the PDP
and tells how to discover advertisements using the Java reference implem-
entation of JXTA.

Introducing the Peer Discovery Protocol
In Chapter 2, you saw that peers discover resources by sending a request to
another peer, usually a rendezvous peer, and receiving responses containing
advertisements describing the available resources on the P2P network.

06_2344 Ch 04 5/14/02 11:34 AM Page 83

84 Chapter 4 The Peer Discovery Protocol

The Peer Discovery Protocol consists of only two messages that define the
following:

n A request format to use to discover advertisements
n A response format for responding to a discovery request

These two message formats, the Discovery Query Message and the Discovery
Response Message, define all the elements required to perform a discovery
transaction between two peers, as shown in Figure 4.1.

Peer 1

Simple Peer 1

Simple Peer 2

Rendezvous Peer 1

Simple Peer 3

1. Peer 1 sends a
Discovery Query
Message to all of its
known simple peers and
rendezvous peers.

2. Rendezvous peers that
receive the query process
the discovery query and
may return a Discovery
Response Message
containing advertisements
from its cache. In addition,
the rendezvous peer will
propagate the query to all
of its known peers.

3. A simple peer receiving
the query searches its local
cache for matching
advertisements. If matches
are found, the peer sends a
Discovery Response
Message directly to the peer
responsible for sending the
original query.

Figure 4.1 Exchange of discovery messages.

Although the messages define a request and a response to that request, it is
important to note that a peer might not expect a Discovery Response
Message in response to a given Discovery Query Message.A response to a
request might not be received for a variety of reasons—for example, the
request didn’t generate any results, or the request was ignored by an over-
loaded peer.

The Discovery Query Message
The Discovery Query Message is sent to other peers to find advertisements. It
has a simple format, as shown in Listing 4.1.

06_2344 Ch 04 5/14/02 11:34 AM Page 84

85Introducing the Peer Discovery Protocol

Listing 4.1 The Discovery Query Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:DiscoveryQuery>

<Type> . . . </Type>

<Threshold> . . . </Threshold>

<PeerAdv> . . .</PeerAdv>

<Attr> . . . </Attr>

<Value> . . .</Value>

</jxta:DiscoveryQuery>

The root element for the Discovery Query Message is the jxta:DiscoveryQuery
element. Developers familiar with XML might recognize the jxta: prefix in
the root element as an XML namespace specifier and wonder if the jxta
namespace is used or enforced within the Java implementation.Although the
jxta prefix does specify a namespace, the current Java implementation of JXTA
does not understand XML namespaces and treats jxta:DiscoveryQuery as the
element name rather than recognizing DiscoveryQuery as an XML tag from the
jxta namespace.

The elements of the Discovery Query Message describe the discovery para-
meters for the query. Only advertisements that match all the requirements
described by the query’s discovery parameters are returned by a peer.The dis-
covery parameters described by the Discovery Query Message are listed here:

n Type—A required element containing an integer value specifying the type
of advertisement being discovered.A value of 0 represents a query for
Peer Advertisements, 1 represents a query for Peer Group Advertisements,
and 2 represents a query for any other type of advertisement.

n Threshold—An optional element containing a number specifying the
maximum number of advertisements that should be sent by a peer
responding to the query.

n PeerAdv—An optional element containing the Peer Advertisement for the
peer making the discovery query.The Peer Advertisement contains details
that uniquely identify the peer on the network to enable another peers
to respond to the query.

n Attr and Value—An optional pair of elements that together specify the
criteria that an advertisement must fulfill to be returned as a response to
this query. Attr specifies the name of an element, and Value specifies the
value that the element must have to be returned as a response to the
query.

06_2344 Ch 04 5/14/02 11:34 AM Page 85

86 Chapter 4 The Peer Discovery Protocol

A couple special exceptions to these rules apply:
n When the Type is set to 0 (representing a query for Peer Advertisements)

and the threshold is set to 0, the peer sending the Discovery Query
Message is seeking to obtain as many Peer Advertisements as possible.All
peers that receive the query should respond to the query with their Peer
Advertisement.

n When values for the Attr and Value elements are absent, each peer
responds with a random set of advertisements of the requested Type, up
to the maximum specified by the Threshold element.

In the Java reference implementation, the Discovery Query Message’s defini-
tion is split into an abstract class definition and a reference implementation
provided by Project JXTA, as shown in Figure 4.2.The purpose of this divi-
sion is to allow third-party developers to maintain API compatibility with the
Java reference implementation when providing their own implementation for
message parsing and formatting.

getAdvertisementType() : java.lang.String

getAttr() : java.lang.String

getDiscoveryType() : int

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

getPeerAdv() : java.lang.String

getThreshold() : int

getValue() : java.lang.String

setAttr(attr : java.lang.String) : void

setDiscoveryType(type : int) : void

setPeerAdv(peer : java.lang.String) : void

setThreshold(threshold : int) : void

setValue(value : java.lang.String) : void

DiscoveryQuery

(from net.jxta.impl.platform)

DiscoveryQuery(stream : java.io.InputStream)

DiscoveryQuery(type : int, peeradv : java.lang.String, attr : java.lang.String, value : java.lang.String, threshold : int)

DiscoveryQuery(doc : net.jxta.document. TextElement)

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

readlt(doc : net.jxta.document.TextElement) : void�

DiscoveryQueryMsg
(from net.jxta.protocol)

type : int

toString() : java.lang.String

Figure 4.2 The Discovery Query Message classes.

The abstract definition of the Discovery Query Message can be found in the
net.jxta.protocol.DiscoveryQueryMsg class, and the reference implementation of
the abstract class can be found in the net.jxta.impl.protocol.DiscoveryQuery
class.

06_2344 Ch 04 5/14/02 11:34 AM Page 86

87Introducing the Peer Discovery Protocol

Listing 4.2 provides the shell command to create a Discovery Query
Message using the DiscoveryQuery implementation and prints it to the Shell’s
standard output for examination.

Listing 4.2 Source Code for example4_1.java

package net.jxta.impl.shell.bin.example4_1;

import java.io.StringWriter;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.discovery.DiscoveryService;

import net.jxta.impl.protocol.DiscoveryQuery;

import net.jxta.impl.shell.ShellApp;

/**

* A Shell command to create and output a Discovery Query Message.

*/

public class example4_1 extends ShellApp

{

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

int type = DiscoveryService.PEER;

String attribute = null;

String value = null;

int threshold = 0;

String advertisementString = “This is my Peer Advertisement”;

// Construct a discovery query message.

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 87

88 Chapter 4 The Peer Discovery Protocol

DiscoveryQuery query =

new DiscoveryQuery(type, advertisementString, attribute,

value, threshold);

// Create an XML formatted string version of the discovery query.

StringWriter buffer = new StringWriter();

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

// MimeMediaType mimeType = new MimeMediaType(“text/plain”);

try

{

StructuredTextDocument document =

(StructuredTextDocument) query.getDocument(mimeType);

document.sendToWriter(buffer);

}

catch (Exception e)

{

e.printStackTrace();

}

// Print out the formatted message.

println(buffer.toString());

return result;

}

}

Place the example’s code in a file called example4_1.java in the Shell subdirec-
tory of the JXTA demo installation. Compile the example using this code:

javac –d . –classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asn1.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC.jar example4_1.java

After the example has compiled, run the Shell application using this code:
java –classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asn1.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC.jar;.
net.jxta.impl.peergroup.Boot

When the Shell has loaded, run the example using this command:
JXTA>example4_1

The example4_1 command produces the XML-formatted Discovery Query
Message containing the parameters for the discovery, shown in Listing 4.3.

Listing 4.2 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 88

89Introducing the Peer Discovery Protocol

Listing 4.3 Output of the example4_1 Shell Command

<?xml version=”1.0”?>

<!DOCTYPE jxta:DiscoveryQuery>

<jxta:DiscoveryQuery xmlns:jxta=”http://jxta.org”>

<Type>

0

</Type>

<Threshold>

0

</Threshold>

<PeerAdv>

This is my Peer Advertisement

</PeerAdv>

</jxta:DiscoveryQuery>

The DiscoveryQuery constructor uses a String representation for the Peer
Advertisement instead of an object, and the String passed to the constructor is
used directly in the output.The Discovery Query Message output produced
by the example isn’t valid because the PeerAdv element doesn’t actually contain
a valid Peer Advertisement. Producing a valid Discovery Query Message using
the DiscoveryQuery class requires the developer to create a Peer Advertisement
object and format it as a String in the same manner that the example uses to
create a String from the query object.This String then set as the contents of
PeerAdv element using DiscoveryQuery’s setPeerAdv method. For now, you’ll avoid
creating the Peer Advertisement object; we’ll focus on it later in this chapter
when advertisement instantiation is explored.

The mechanism for formatting the query object as a String is entirely
abstracted through the net.jxta.document.Document interface.The Document inter-
face defines a generic container for MIME media that can be read from an
InputStream or written to an OutputStream.All advertisement and message
objects used by the Java implementation of JXTA use an implementation of
the StructuredTextDocument interface, derived from the Document interface, to
provide a representation of the class as a structured MIME text document.

Using the StructuredTextDocument interface, the query object in the example
is written out to XML by providing a MimeMediaType object for the text/xml
MIME type to the query object’s getDocument method. Because the formatting
framework is so flexible, the output format could be easily changed to print
plain text instead of XML by changing the following line in the example:

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

06_2344 Ch 04 5/14/02 11:34 AM Page 89

90 Chapter 4 The Peer Discovery Protocol

To print plain text, create a MimeMediaType object for the text/plain MIME type
instead of text/xml using the following line:

MimeMediaType mimeType = new MimeMediaType(“text/plain”);

When this change is in place, recompile the example and restart the Shell
application. Running the example4_1 command this time produces the result
shown in Listing 4.4.

Listing 4.4 Output of the Modified example4_1 Shell Command

jxta:DiscoveryQuery :

Type : 0

Threshold : 0

PeerAdv : This is my Peer Advertisement

The format of the output is determined by the MimeMediaType object passed to
getDocument.The query object’s getDocument method uses this MIME type and
the StructuredDocumentFactory to produce an implementation of the
StructuredDocument interface.The available implementations of
StructuredDocument are defined in the StructuredDocumentInstanceTypes property
of the config.properties property file located in the net.jxta.impl package.
Currently, only two implementations, LiteXMLDocument and PlainTextDocument, are
available, corresponding to the text/xml and text/plain MIME types, respec-
tively.The abstraction of message and advertisement formatting means that the
Java reference implementation could switch easily from XML to another, pos-
sibly binary, format without requiring major changes to the implementation
architecture.

The example demonstrates only how to create a Discovery Query Message,
not how to send it to other peers to perform the actual discovery.An applica-
tion developer never actually needs to formulate a Discovery Query Message
and send it to other peers themselves; in fact, there is no abstract way of
instantiating a DiscoveryQueryMsg implementation in the Java reference imple-
mentation.The DiscoveryQueryMsg is an abstract class defining an interface that
DiscoveryQuery implements.Although a developer can use the DiscoveryQuery
implementation directly, this prevents a developer from using another imple-
mentation without changing all the code.As you’ll see, developers discover
advertisements using the Discovery service instead of using the
DiscoveryQueryMsg class or its implementations directly, thereby abstracting
the developer from a particular implementation of DiscoveryQueryMsg.

06_2344 Ch 04 5/14/02 11:34 AM Page 90

91Introducing the Peer Discovery Protocol

The Discovery Response Message
To reply to a Discovery Query Message, a peer creates a Discovery Response
Message that contains advertisements that match the query’s search criteria,
such as the Attr/Value combination or Type of advertisement.The Discovery
Response Message is formatted as shown in Listing 4.5.

Listing 4.5 The Discovery Response Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:DiscoveryResponse>

<Type> . . . </Type>

<Count> . . . </Count>

<PeerAdv> . . . </PeerAdv>

<Attr> . . . </Attr>

<Value> . . . </Value>

<Response Expiration=”expiration time”>

. . .

</Response>

</jxta:DiscoveryResponse>

The elements of the Discovery Response Message closely correspond to those
of the Discovery Query Message:

n Type—Similar to the Type element passed in the Discovery Query
Message, the Type element here is a required element containing an
integer value that represents the type of all the advertisements contained
within the Response elements of the message.As before, a value of 0 repre-
sents Peer Advertisements, 1 represents Peer Group Advertisements, and 2
represents all other types of advertisements.

n Count—An optional element containing an integer representing the total
number of Response elements in the message.

n PeerAdv—An optional element containing the Peer Advertisement of the
peer responding to the original Discovery Query Message.

n Attr and Value—An optional pair of elements that together specify the
original search criteria that generated this response.These have the same
value as the Attr and Value in the Discovery Query Message; if these ele-
ments were not present in the original query, they are omitted from the
response.

06_2344 Ch 04 5/14/02 11:34 AM Page 91

92 Chapter 4 The Peer Discovery Protocol

n Response—An optional element containing an advertisement that
matched the search criteria in the Discovery Query Message. Each
Discovery Response Message can contain multiple Response elements,
each containing one advertisement in response to the original query.
The total number of Response elements equals the value held by the Count
element.The Expiration attribute on the Response elements specifies the
length of time that this advertisement should be considered valid. In
the Java reference implementation, this time is implicitly expressed in
milliseconds.

The abstract definition of the Discovery Response Message is defined in the
net.jxta.protocol.DiscoveryResponseMsg class, shown in Figure 4.3, and the refer-
ence implementation is defined in the net.jxta.impl.protocol.DiscoveryResponse
class.

 setExpirations(expirations : java.util.Vector) : void

 setQueryAttr(attr : java.lang.String) : void

 DiscoveryResponse
 (from net.jxta.impl.platform)

 DiscoveryResponse(stream : java.io.InputStream)
 DiscoveryResponse(count : int, type : int, peeradv : java.lang.String,attr : java.lang.String, value : java.lang.String, responses : java.util.Vector,expirations : java.util.Vector)
 DiscoveryResponse(doc : net.jxta.document.TextElement)
 getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

 readlt(doc : net.jxta.document.TextElement) : void

DiscoveryResponseMsg
(from net.jxta.protocol)

type : int

 toString() : java.lang.String

count: int

 getAdvertisementType() : java.lang.String
 getDiscoveryType() : int

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getExpirations(0 : java.util.Enumeration
getPeerAdv() : java.lang.String

 getQueryAttr() : java.lang.String
 getQueryValue() : java.lang.String

getResponseCount() : int
getResponses() : java.util.Enumeration
setDiscoveryType(type : int) : void

setPeerAdv(peer : java.lang.String) : void

 setQueryValue(value : java.lang.String) : void
setResponseCount(count : int) : void
setResponses(responses : java.util.Vector) : void

Figure 4.3 The Discovery Response Message classes.

Unlike with DiscoveryQueryMsg class, a developer uses the DiscoveryResponseMsg
class in conjunction with the Discovery service to process responses to queries.
The DiscoveryResponseMsg class provides developers with an easy mechanism to
extract response advertisements; this is demonstrated in the example in the
next section.

06_2344 Ch 04 5/14/02 11:34 AM Page 92

93The Discovery Service

The Discovery Service
All the protocols defined by the JXTA Protocols Specification are imple-
mented as services called core services.The core services include the following:

n Discovery
n Pipe
n Endpoint
n Rendezvous
n Peer Info
n Resolver

An instance of a service is associated with a specific peer group. Only peers
that are members of the same peer group are capable of communicating with
each other via their services. By default, all peers belong to a common peer
group, called Net Peer Group, thereby allowing all peers and their advertise-
ments to be discovered.

Services provide developers with a level of abstraction, insulating them
somewhat from the raw message objects used to send information between
peers.The Discovery service provides a mechanism for the following:

n Retrieving remote advertisements
n Retrieving local advertisements
n Publishing advertisements locally
n Publishing advertisements remotely
n Flushing local advertisements

In the Java reference implementation, the Discovery service is defined by the
DiscoveryService interface in net.jxta.discovery and is implemented by the
DiscoveryServiceImpl class in net.jxta.impl.discovery, as shown in Figure 4.4.

 <<Interface>>
 DiscoveryService

 (from net.jxta.discovery)

 PEER : int = 0
 GROUP : int = 1

 ADV : int = 2
 DEFAULT_LIFETIME : long = 1471228928
 DEFAULT_EXPIRATION : long= 7200000

 addDiscoveryListener(listener : net.jxta.discovery.DiscoveryListener) : void
 flushAdvertisements(id : java.lang.String, type : int) : void

 getLocalAdvertisements(type : int, attribute : java.lang.String, value : java.lang.String) : java.util.Enumeration
 getRemoteAdvertisements(peerid : java.lang.String, type : int, attribute : java.lang.String, value : java.lang.String, threshold : int) : int
 getRemoteAdvertisements(peerid : java.lang.String, type : int, attribute : java.lang.String, value : java.lang.String, threshold : int listener : net.jxta.discovery.DiscoveryListener) : void

 publish(advertisement : net.jxta.document.Advertisement, type : int) : void
 publish(advertisement : net.jxta.document.Advertisement, type : int, lifetime : long, lifetimeForOthers : long) : void

 remotePublish(advertisement : net.jxta.document.Advertisement, type : int) : void
 remotePublish(advertisement : net.jxta.document.Advertisement, type : int, lifetime : long) : void
 removeDiscoveryListenere(listener : net.jxta.discovery.DiscoveryListener) : boolean

DiscoveryServiceImpl
(from net.jxta.impl.discovery)

Figure 4.4 The DiscoveryService interface and implementation.

06_2344 Ch 04 5/14/02 11:34 AM Page 93

94 Chapter 4 The Peer Discovery Protocol

The DiscoveryService interface provides a simple mechanism for developers
to send discovery queries and process discovery responses.A small set of con-
venience methods allows developers to send Discovery Query Messages
without requiring the developer to create and populate a DiscoveryQuery
object beforehand.

The DiscoveryListener Interface
An application requires some way of being notified of responses to a discovery
query to allow the application to extract advertisements from the response. In
the Java reference implementation, developers can register a listener object that
will be notified by the DiscoveryService when Discovery Response Messages
are received.

Java developers are probably most familiar with the concept of a listener
from the Java Foundation Classes (JFC). In the JFC, a listener interface is
defined for each type of event that can be generated from a user interface
widget, such as a button.An object that wants to be informed when a button
is clicked implements the appropriate listener interface and registers itself with
the button.When the button is clicked, the button widget calls the appropriate
method of each listener implementation instance that has registered with the
widget.

The Java reference implementation uses a similar mechanism to allow
developers to be informed when a new Discovery Response Message is
received by the DiscoveryService.A developer wanting to be notified of the
arrival of a new Discovery Response Message needs to create an implementa-
tion of the DiscoveryListener interface, as shown in Figure 4.5.

<<Interface>>
DiscoveryListener

(from net.jxta.discovery)

discoveryEvent(event : net.jxta.discovery.DiscoveryEvent) : void

Figure 4.5 The DiscoveryListener interface.

To receive notification, the developer registers the implementation of the
DiscoveryListener interface with an instance of the DiscoveryService using
the addDiscoveryListener method defined in the net.jxta.discovery.Discovery
interface:

public void addDiscoveryListener(
DiscoveryListener listener);

06_2344 Ch 04 5/14/02 11:34 AM Page 94

95The Discovery Service

Each time the DiscoveryService instance receives a Discovery Response
Message, the listener’s discoveryEvent method is called with an event detailing
the response received by the service.

To stop receiving notifications, the listener object must be removed from
the DiscoveryService using the removeDiscoveryListener method defined in the
net.jxta.discovery.Discovery interface:

public boolean removeDiscoveryListener(
DiscoveryListener listener);

A reference to the original listener object is required to be capable of remov-
ing the listener object from the DiscoveryService instance.The call to the
removeDiscoveryListener returns true if the given listener object is removed
from the DiscoveryService instance, or false if the listener object isn’t currently
registered with the DiscoveryService instance.

The DiscoveryEvent Class
As shown in Figure 4.6, the DiscoveryEvent defined in net.jxta.discovery is
provided to the discoveryEvent method of the DiscoveryListener implementa-
tion to provide details on the Discovery Response Message received by a
DiscoveryService instance.

EventObject

(from java.util)

source : Object

EventObject(source : Object)

getSource() : Object

toString() : String

DiscoveryEvent

(from net.jxta.discovery)

DiscoveryEvent(source : java.lang.Object, response : net.jxta.protocol.DiscoveryResponseMsg, queryID : int)

getQueryID() : int

getResponse() : net.jxta.protocol.DiscoveryResponseMsg

Figure 4.6 The DiscoveryEvent class.

The listener can extract the DiscoveryResponseMsg from the event using the
getResponse method of DiscoveryEvent:

public DiscoveryResponseMsg getResponse()

Use the getResponses method of DiscoveryResponseMsg, as shown in Listing 4.6,
to obtain an Enumeration object that can be used to iterate over the advertise-
ments returned in the DiscoveryResponseMsg.

06_2344 Ch 04 5/14/02 11:34 AM Page 95

96 Chapter 4 The Peer Discovery Protocol

Listing 4.6 Extracting Responses from a DiscoveryEvent Object

public void discoveryEvent(DiscoveryEvent event)

{

DiscoveryResponseMsg response = event.getResponse();

Enumeration enum = response.getResponses();

while (enum.hasMoreElements())

{

String advString =

(String) enum.nextElement();

// Extract the advertisement from the string here.

}

}

The DiscoveryResponseMsg interface also provides the getExpirations method,
allowing a developer to obtain an Enumeration of the expiration times for each
of the advertisements returned in the response.

Using DiscoveryListener and DiscoveryEvent
To try out handling discovery responses, you’ll create a shell command to
handle registering and unregistering your own DiscoveryListener implementa-
tion. First, you need an implementation of the DiscoveryListener interface, as
shown in Listing 4.7.

Listing 4.7 Source Code for ExampleListener.java

package net.jxta.impl.shell.bin.example4_2;

import java.util.Enumeration;

import net.jxta.document.Advertisement;

import net.jxta.discovery.DiscoveryEvent;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.protocol.DiscoveryResponseMsg;

/**

* A simple listener to notify the user when a discovery event has

06_2344 Ch 04 5/14/02 11:34 AM Page 96

97The Discovery Service

* been received.

*/

public class ExampleListener implements DiscoveryListener

{

/**

* The DiscoveryListener’s event method, used for handling

* notification of a received Discovery Response Message from

* the Discovery service.

*

* @param event the event containing the received response.

*/

public void discoveryEvent(DiscoveryEvent event)

{

DiscoveryResponseMsg response = event.getResponse();

System.out.println(“Received a response containing “

+ response.getResponseCount() + “ advertisements”);

}

For this simple example, you don’t need anything fancy—just a notification
that a response has been received and details on the number of advertisements
contained in the response. Next, you need to create a Shell command called
example4_2 to handle registering and unregistering your listener object.This is
shown in Listing 4.8.

Listing 4.8 Source Code for example4_2.java

package net.jxta.impl.shell.bin.example4_2;

import net.jxta.discovery.DiscoveryService;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

package net.jxta.impl.shell.bin.example4_2;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 97

98 Chapter 4 The Peer Discovery Protocol

import net.jxta.discovery.DiscoveryService;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to register or unregister a

* DiscoveryListener.

*/

public class example4_2 extends ShellApp

{

/**

* The shell environment holding the store of environment variables.

*/

ShellEnv theEnvironment;

/**

* A flag indicating whether to add or remove the listener.

*/

boolean addListener = true;

/**

* The name used to store the listener in the environment.

*/

String name = “Default”;

/**

* Manages adding or removing the listener.

*

* @param discovery the Discovery service to use to manage

* the listener.

*/

private void manageListener(DiscoveryService discovery)

{

Listing 4.8 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 98

99The Discovery Service

if (name != null)

{

// Check if a listener already exists.

ShellObject theShellObject = theEnvironment.get(name);

if (addListener)

{

if (theShellObject == null)

{

// Create a new listener.

DiscoveryListener listener = new ExampleListener();

// Add the listener to the discovery service.

discovery.addDiscoveryListener(listener);

// Add the listener object to the environment.

theEnvironment.add(name,

new ShellObject(name, listener));

}

}

else

{

if (theShellObject != null)

{

DiscoveryListener listener =

(DiscoveryListener) theShellObject.getObject();

// Remove the listener from the discovery service.

discovery.removeDiscoveryListener(listener);

// Remove the listener object from the environment.

theEnvironment.remove(name);

}

}

}

}

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 99

100 Chapter 4 The Peer Discovery Protocol

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “rn:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘r’ :

{

// Remove the listener.

addListener = false;

break;

}

case ‘n’ :

{

// Get the name used to store the listener object.

String argument= null;

if ((argument = parser.getOptionArg()) != null)

{

name = argument;

}

break;

}

}

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

Listing 4.8 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 100

101The Discovery Service

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Manage the listener to the Discovery service. This

// adds or removes the listener as specified by the

// command-line parameters.

manageListener(discovery);

return result;

}

}

By default, the example4_2 command creates a listener, adds it to the current
peer group’s DiscoveryService, and stores the listener in a Shell environment
variable named Default. Storing the listener object is essential; otherwise, the
listener can’t be removed from the DiscoveryService at a later time.

06_2344 Ch 04 5/14/02 11:34 AM Page 101

102 Chapter 4 The Peer Discovery Protocol

Note
Even if you already configured the Shell in the past, you will be prompted each time you start the
Shell to provide your username and password. When trying out the examples, this can become
annoying. To avoid having to enter your username and password each time, you can pass in your
username and password as system properties to the Java runtime. Use this command to pass in
your username and password as system properties:

java -Dnet.jxta.tls.password=password
-Dnet.jxta.tls.principal=username . . .

This sets a system property called net.jxta.tls.password to the password value provided after the
equals (=) sign and a system property called net.jxta.tls.principal to the username pro-
vided. When you start the Shell from the command line and include these parameters, the Shell
starts immediately without prompting for your username and password.

Place the source code in the Shell subdirectory of the JXTA installation and
compile it in the same way that you compiled the previous example. Start the
Shell from the command line.After the Shell has loaded, clear the local cache
of Peer Advertisements using this line:

JXTA>peers –f

Register an ExampleListener instance by running the example4_2 command:
JXTA>example4_2

You can check that a Shell variable has been created using the variable name
Default by checking the output of the env command.At this point, a
DiscoveryListener has been registered to be notified when Discovery Response
Messages are received by the current peer group’s DiscoveryService.The code
responsible for retrieving the current peer group and the peer group’s
DiscoveryService is shown in Listing 4.9.

Listing 4.9 Obtaining DiscoveryService

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

06_2344 Ch 04 5/14/02 11:34 AM Page 102

103The Discovery Service

This code retrieves the current peer group’s PeerGroup object from the Shell’s
environment, where it is always stored using the name stdgroup.This object
obtains a reference to the DiscoveryService object that is used by the
manageListener method to either add or remove the listener.

To see the listener in action, send a discovery query using the peers -r
command:

JXTA>peers -r

Every time your peer receives responses to the query, the ExampleListener
object’s discoveryEvent method prints the number of advertisements in the
response message:

Received a response containing 4 advertisements

This output appears not in the Shell itself, but in the standard output of the
command shell used to start the Shell application.Although you could print
the output to the Shell console, it would require delving into the use of pipes,
which isn’t appropriate at this point.

Instead of sending an active discovery query, try using the peers command
to retrieve local Peer Advertisements, and observe the behavior of the
ExampleListener output.You should observe that the ExampleListener never
receives notification of responses to a local discovery query.The
DiscoveryService uses the local cache to provide immediate responses to a call
to send a local discovery query; therefore, registered listeners never receive a
notification of a response to a local discovery query.

The example4_2 command takes two optional parameters, -r and -n.The -r
option indicates to the command that the listener object should be removed
from the DiscoveryService, and the -n option indicates the name of the variable
storing the listener instance. For example, issuing the following line attempts
to retrieve a DiscoveryListener object from an environment variable named
MyListener and remove the retrieved listener object from the DiscoveryService
instance:

JXTA>example4_2 –r -nMyListener

The arguments to the example4_2 command are parsed easily using the GetOpt
object in the example:

GetOpt parser = new GetOpt(args, “rn:”);

The second argument to the GetOpt constructor, called the format string, speci-
fies the command’s options and whether the option has any arguments. If a
character is followed by the : (colon) character, that option requires an

06_2344 Ch 04 5/14/02 11:34 AM Page 103

104 Chapter 4 The Peer Discovery Protocol

argument; if it is followed by the ; (semicolon), the option has an optional
argument.This functionality will be used again in later examples.

At this point, you know how to receive notification of a response to discov-
ery query but not how to send the actual discovery query itself.The next sec-
tion provides an example of how to send a discovery query to a remote peer
using the DiscoveryService.

Finding Remote Advertisements
Rather than force developers to create a DiscoveryQueryMsg instance themselves,
the DiscoveryService interface provides an easy way for developers to send a
Discovery Query Message to other peers using the getRemoteAdvertisements
method:

public int getRemoteAdvertisements (String peerid,
int type, String attribute, String value,
int threshold, DiscoveryListener listener);

Each parameter passed to getRemoteAdvertisements corresponds to a field in the
Discovery Query Message, with the exception of the peerid and listener para-
meters.The peerid parameter is a parameter that uniquely identifies the peer to
query for advertisements; if this parameter is null, the message is sent to all
peers on the local network and is propagated via available rendezvous peers.
More information on identifiers is provided in the section “Working with
Advertisements” later in this chapter.

The listener parameter provides a DiscoveryListener object that is called
only when responses arrive in response to this particular call to
getRemoteAdvertisements. Providing a listener object provides a way to receive
notification without registering a listener with the DiscoveryService. Registered
listeners are notified of incoming responses regardless of whether a null or
non-null listener is passed to getRemoteAdvertisements.

To try out the getRemoteAdvertisements method, the following example shell
command shown in Listing 4.10 allows a user to send remote queries and
specify the desired advertisement type and maximum responses.

Listing 4.10 Source Code for example4_3.java

package net.jxta.impl.shell.bin.example4_3;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

06_2344 Ch 04 5/14/02 11:34 AM Page 104

105The Discovery Service

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to send remote

* discovery queries using the current peer group’s Discovery service.

*/

public class example4_3 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to peer

* advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The maximum number of responses requested.

*/

private int threshold = 10;

/**

* The Discovery service being used to discover advertisements.

*/

private DiscoveryService discovery = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 105

106 Chapter 4 The Peer Discovery Protocol

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:t:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

{

// Set the type of advertisement to discover.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

case ‘t’ :

{

String argument = null;

if ((argument = parser.getOptionArg()) != null)

{

// Set the threshold.

threshold = Integer.parseInt(argument);

}

break;

}

}

}

}

/**

* Send a discovery request to remote peers via the Discovery service.

*

Listing 4.10 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 106

107The Discovery Service

* @param type the type of advertisement to discover.

* @param threshold the maximum number of advertisements to be

* returned by any single peer.

*/

private void sendRemoteDiscovery(int type, int threshold)

{

discovery.getRemoteAdvertisements(null, type, null, null,

threshold, null);

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 107

108 Chapter 4 The Peer Discovery Protocol

// Send a remote discovery request.

sendRemoteDiscovery(type, threshold);

return result;

}

}

The example is essentially a replacement for the peers –r command.When run
in conjunction with example4_2, it allows a user to send queries and be notified
when responses arrive.

To see the example4_3 command in action, first register a listener using the
example4_2 command:

JXTA>example4_2

Then send a Discovery Query Message that searches for Peer Advertisements,
with a maximum of 10 responses from any given peer:

JXTA>example4_3

The peer sends a Discovery Query Message to all known peers requesting a
response containing matching advertisements.The ExampleListener registered
using the example4_2 command prints information each time that a response to
this query is received by the DiscoveryService instance.

Finding Cached Advertisements
In the Java reference implementation, advertisements in responses to a
Discovery Query Message are automatically added to a local cache of adver-
tisements. DiscoveryListener implementations don’t have to provide caching
functionality themselves.

To find advertisements using the local cache, a developer can use the
getLocalAdvertisements method of the DiscoveryService interface. Unlike per-
forming an active discovery to find advertisements on remote peers, perform-
ing discovery using the local cache returns results immediately and does not
require an implementation of the DiscoveryListener interface.

To see how local discovery works, Listing 4.11 shows another example Shell
command that replaces some of the functionality of the peers command.

Listing 4.10 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 108

109The Discovery Service

Listing 4.11 Source Code for example4_4.java

package net.jxta.impl.shell.bin.example4_4;

import java.io.IOException;

import java.util.Enumeration;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.Advertisement;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to send local

* discovery queries using the current peer group’s Discovery service.

*/

public class example4_4 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to

* peer advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The Discovery service being used to discover advertisements.

*/

private DiscoveryService discovery = null;

/**

* The name of the element to match.

*/

private String attribute = null;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 109

110 Chapter 4 The Peer Discovery Protocol

/**

* The value to match for the element specified by the attribute

* variable.

*/

private String value = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:k:v:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

{

// Set the type of advertisement to discover.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

Listing 4.11 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 110

111The Discovery Service

case ‘k’ :

{

// Set the attribute to match.

attribute = parser.getOptionArg();

break;

}

case ‘v’ :

{

// Set the value for the attribute being matched.

value = parser.getOptionArg();

break;

}

}

}

// Both attribute and value must be specified.

if (!((null != attribute) && (null != value)))

{

// Set both to null.

attribute = null;

value = null;

}

}

/**

* Sends a local discovery request using the Discovery service.

*/

private void sendLocalDiscovery()

{

try

{

int count = 0;

Enumeration enum =

discovery.getLocalAdvertisements(type, attribute, value);

Advertisement advertisement;

// Iterate through the response advertisements.

while (enum.hasMoreElements())

{

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 111

112 Chapter 4 The Peer Discovery Protocol

// Get the next element from the enumeration.

advertisement = (Advertisement) enum.nextElement();

println(“Found a matching advertisement!”);

// Increment the counter.

count++;

}

println(“Found “ + count + “ advertisements!”);

}

catch (IOException e)

{

println(“Error discovering local advertisements!” + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

discovery = currentGroup.getDiscoveryService();

try

{

Listing 4.11 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 112

113The Discovery Service

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Send a local discovery request.

sendLocalDiscovery();

return result;

}

Instead of using a DiscoveryListener implementation to handle advertisements
returned in a DiscoveryResponseMsg response, getLocalAdvertisements returns an
Enumeration of advertisements immediately that match the query parameters
provided.

This example allows the user to provide an attribute and value to match,
allowing the user to search for an advertisement that matches specific criteria.
For example, assume that the peers command returns the following:

peer0: name = Cadillac
peer1: name = spec
peer2: name = spiro
peer3: name = zynevich

The example4_4 command could be used to search the local cache for any Peer
Advertisement in which the peer has a given name.The name of a peer is
described by the Name element in its advertisement and is displayed as the name
in the list returned by the peers command.To discover Peer Advertisements in
which the Name is spec using the example4_4 command, do the following:

JXTA>example4_4 –a0 –kName -vspec
Found a matching advertisement!
Found 1 advertisements!

The –a option specifies the advertisement type to discover, and the –k and –v
options together specify a tag and value that an advertisement must contain to
be part of a peer’s response to the query. Discovering an advertisement that
matches a given tag and value combination can even use a wildcard in the

06_2344 Ch 04 5/14/02 11:34 AM Page 113

114 Chapter 4 The Peer Discovery Protocol

value string. Discovering Peer Advertisements with a tag called Name whose
value starts with the letter s could be accomplished as follows:

JXTA>example4_4 –a0 –kName –vs*
Found a matching advertisement!
Found 2 advertisements!

The wildcard symbol, *, can be used anywhere within the value term; how-
ever, the wildcard symbol can’t be used by itself, and the value to be matched
must consist of at least one nonwildcard character.Wildcards can even be used
in multiple places in the search string:

JXTA>example4_4 –a0 –kName –v*ill*
Found a matching advertisement!
Found 1 advertisements!

The Cache Manager

The local cache, implemented by the Cache Manager class Cm in the
net.jxta.impl.cm package, handles storing discovered advertisements in a local
file and directory structure.The Cache Manager is responsible not only for
providing search capabilities for local discovery requests, but also for finding
advertisements that match Discovery Query Messages sent by other peers.The
Cache Manager stores cached advertisements in a directory called cm under the
current directory when the JXTA application is executed.

Flushing Advertisements
At some point, an application might need to clear the entire cache; this might
be required when an application has not been used in a long time and all
advertisements are suspected to be stale.As shown in Listing 4.12, the
DiscoveryService provides a simple mechanism to allow an application to clear
the cache of specific advertisement types that match a given type of advertise-
ment and identifier string.

Listing 4.12 Source Code for example4_5.java

package net.jxta.impl.shell.bin.example4_5;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

06_2344 Ch 04 5/14/02 11:34 AM Page 114

115The Discovery Service

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to flush

* discovered advertisements from the local cache using the current peer

* group’s Discovery service.

*/

public class example4_5 extends ShellApp

{

/**

* The type of advertisement to flush. Defaults to peer advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The ID of the advertisement to flush. Defaults to null.

*/

private String id = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:i:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 115

116 Chapter 4 The Peer Discovery Protocol

{

// Set the type of advertisement to flush.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

case ‘i’ :

{

// Set the ID string of the advertisement to flush.

id = parser.getOptionArg();

break;

}

}

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

Listing 4.12 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 116

117The Discovery Service

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the DiscoveryService service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

// Flush all of the advertisements of the given type and ID.

discovery.flushAdvertisements(id, type);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

catch (IOException e)

{

println(“Error flushing advertisements: “ + e);

result = appMiscError;

}

return result;

}

}

To remove all the Peer Advertisements from the local cache using the
example4_5 command, type the following:

JXTA>example4_5 –a0

Invoking the peers command after this command should return an empty list.
To remove only a specific advertisement, the unique identifier for the

advertisement is required; in the case of a Peer Advertisement, this identifier is
given by the PID element.The PID can be obtained using the cat command to
view a Peer Advertisement stored in the Shell’s environment variables, as
demonstrated in Chapter 3,“Introducing JXTA P2P Solutions.” For example,
imagine that the Peer Advertisement to be flushed from the cache has this ID:

urn:jxta:uuid-59616261646162614A78746150
32503323EC5B06B634476AB7418CB18BA45DCA03

06_2344 Ch 04 5/14/02 11:34 AM Page 117

118 Chapter 4 The Peer Discovery Protocol

It can be removed from the cache using this command:
JXTA> example4_5 -a0 -iurn:jxta:uuid-59616261646162614A7874615032503
323EC5B06B634476AB7418CB18BA45DCA03

Executing this command removes the advertisement from the cache by delet-
ing its corresponding advertisement from within the Cache Manager’s cm
directory.

Working with Advertisements
At this point, this chapter has only really discussed advertisements in generic
terms.You have not delved into the specifics of what information is contained
by a particular advertisement or how advertisements are used within the Java
reference implementation.Although you know how to discover advertise-
ments, how do you use them?

All advertisements in the Java reference implementation extend the
net.jxta.document.Advertisement abstract class.The Advertisement class defines
several methods, the most important being the getDocument method for trans-
forming an Advertisement into a Document instance corresponding to a particular
MIME type.As shown in Figure 4.7, each type of advertisement is split into an
abstract class in the net.jxta.protocol package and an implementation class in
net.jxta.impl.protocol.

Advertisement
(from net.jxta.document)

expiration : long

 Advertisement()
 clone() : java.lang.Object

 getAdvertisementType() ; java.lang.String
 getDocument(asMimeTpe : net.jxta.documentMimeMediaType) : net.jxta.document.Document

 getID() : net.jxta.Id.ID
 getLocalExpirationTime() : long

 setExpiration(timeout : long) : void
 setExpirationTime(timeout : long)void

EndpointAdvertisement
(from net.jxta.protocol)

ModuleClassAdvertisement
(from net.jxta.protocol)

ModuleImplAdvertisement
(from net.jxta.protocol)

ModuleSpecAdvertisement
(from net.jxta.protocol)

PeerAdvertisement
(from net.jxta.protocol)

PeerGroupAdvertisement
(from net.jxta.protocol)

PipeAdvertisement
(from net.jxta.protocol)

RdvAdvertisement
(from net.jxta.protocol)

StdPeerGroupParamAdv
(from net.jxta.impl.peergroup)

 TransportAdvertisement
(from net.jxta.protocol)

Figure 4.7 The Advertisement abstract implementation classes.

The net.jxta.protocol abstract classes augment the Advertisement class with
attributes specific to the type of advertisement and accessor methods to set and
retrieve the value of those fields.The net.jxta.impl.protocol implementation
classes provide the implementation of the getDocument method.

06_2344 Ch 04 5/14/02 11:34 AM Page 118

119Working with Advertisements

Instantiating an Advertisement
To insulate a developer from knowing about a specific advertisement imple-
mentation class, advertisements are instantiated using the AdvertisementFactory
class in the net.jxta.document package.The simplest way to create an advertise-
ment instance is to use the factory’s static newAdvertisement method, providing a
String containing the type of advertisement to create.

An advertisement type in the Java reference implementation is a String
containing the root element of the advertisement that it is associated with.
Although developers could construct the advertisement type String them-
selves, it is easier to use the static getAdvertisementType defined by the
Advertisement class. For example, a PeerAdvertisement could be instantiated using
either

PeerAdvertisement advertisement =
(PeerAdvertisement)

AdvertisementFactory.newAdvertisement(
“jxta:PA”);

or
PeerAdvertisement advertisement =

(PeerAdvertisement)
AdvertisementFactory.newAdvertisement(

PeerAdvertisement.getAdvertisementType());

Each of the net.jxta.protocol subclasses of Advertisement provides an imple-
mentation of getAdvertisementType that allows a developer to get a specific type
of advertisement without knowing which concrete class is providing the
implementation.

Publishing Advertisements
Constructing an advertisement by itself doesn’t make the advertisement known
to either the local peer or any other peer on the network. For an advertise-
ment to be available on the P2P network, it needs to be published locally,
remotely, or both.

Publishing an advertisement locally places the advertisement in the local
peer’s cache of advertisements; other peers can find this advertisement using a
standard Discovery Query Message.The DiscoveryService interface provides a
simple mechanism for publishing the advertisement to the local cache using
either

public void publish(Advertisement advertisement,
int type) throws IOException;

06_2344 Ch 04 5/14/02 11:34 AM Page 119

120 Chapter 4 The Peer Discovery Protocol

or
public void publish (Advertisement adv, int type,

long lifetime, long lifetimeForOthers)
throws IOException;

The second version of the publish method is more explicit, allowing the caller
to specify not only the advertisement and its type, but also the length of time
that the advertisement will remain in the local cache and the length of time
that the advertisement will be available to be discovered by other peers.The
length of time in both cases is expressed in milliseconds, and the type of
advertisement corresponds to the values used by the Discovery Query and
Response Messages (0 = peer, 1 = peer group, 2 = other advertisements).

The first version of the publish method publishes an advertisement to the
local cache using default values for the local and remote lifetimes of the adver-
tisement.The default local lifetime is one year, and the default lifetime for
other peers is two hours.

To help accelerate the process of distributing an advertisement within the
membership of a peer group, an advertisement can be published remotely.
Publishing an advertisement remotely broadcasts the advertisement directly to
other known peers or indirectly via known rendezvous peers to other mem-
bers of the peer group associated with the DiscoveryService service instance.
This broadcast uses a Discovery Response Message to push the advertisement
to peers.

The DiscoveryService interface provides two methods, similar to the publish
methods, to publish an advertisement to a remote peer.An advertisement can
be remotely published using either

public void remotePublish (
Advertisement adv, int type);

or
public void remotePublish (Advertisement adv, int

type, long lifetime);

Although the documentation in the DiscoveryService interface specifies that the
type can be set to indicate a peer, peer group, or other type of advertisement,
the current implementation does not remotely publish Peer Advertisements.
However, the reference implementation of DiscoveryService, DiscoveryServiceImpl,
automatically adds the Peer Advertisement contained in any Discovery Query
Messages that it receives, providing the same functionality.

To demonstrate the use of the publish and remotePublish methods, the shell
command in Listing 4.13 creates a Peer Group Advertisement using the
current peer group as a template, and publishes the advertisement locally
and remotely.

06_2344 Ch 04 5/14/02 11:34 AM Page 120

121Working with Advertisements

Listing 4.13 Source Code for example4_6.java

package net.jxta.impl.shell.bin.example4_6;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.PeerGroupAdvertisement;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to publish a peer group

* advertisement based on the Shell’s current peer group.

*/

public class example4_6 extends ShellApp

{

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 121

122 Chapter 4 The Peer Discovery Protocol

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Create an advertisement.

PeerGroupAdvertisement advertisement =

(PeerGroupAdvertisement)

AdvertisementFactory.newAdvertisement(

PeerGroupAdvertisement.getAdvertisementType());

// Populate the various fields. For most of this, we’ll create

// our own values, but we’ll need the Module Spec ID of our

// current peer group.

PeerGroupAdvertisement currentAdvertisement =

currentGroup.getPeerGroupAdvertisement();

// Set the values that must be unique for the new advertisement.

advertisement.setName(“NewGroup”);

advertisement.setDescription(“PG for example4_6”);

advertisement.setPeerGroupID(IDFactory.newPeerGroupID());

advertisement.setModuleSpecID(

currentAdvertisement.getModuleSpecID());

// Publish the advertisement locally.

discovery.publish(advertisement, DiscoveryService.GROUP,

10000, 1000);

// Publish the advertisement remotely.

discovery.remotePublish(advertisement,

DiscoveryService.GROUP, 1000);

}

catch (IOException e)

{

println(“Error publishing the advertisement to cache.” + e);

result = ShellApp.appMiscError;

}

return result;

}

}

Listing 4.13 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 122

123Working with Advertisements

Not all the values for the newly created Peer Group Advertisement are exact
copies; most important, the identifier for the peer group must be a new,
unique ID. Creating a new ID is achieved using the net.jxta.id.IDFactory to
create a new Peer Group ID:

advertisement.setPeerGroupID(IDFactory.newPeerGroupID());

The IDFactory class generates a unique identifier for a variety of advertisements
that require a unique identifier, including peers, peer groups, pipes, and ser-
vices.

One other ID that is added to the new Peer Group Advertisement is a
Module Specification ID:

advertisement.setModuleSpecID(currentAdvertisement.getModuleSpecID());

This ID uniquely identifies a Module Specification Advertisement, which
defines the set of services provided by the peer group. For this example, you
simply copy the value, thereby associating your Peer Group Advertisement
with the same Module Specification Advertisement as the current group.

When you explore services and peer groups in Chapter 10,“Peer Groups
and Services,” you learn how to create a new Module Specification
Advertisement and use it to create a new peer group and start the group’s ser-
vices. It’s important to note that this example only publishes the new peer
group’s advertisement but does not actually start the new peer group’s services.

To try out the example4_6 command, start the Shell and flush the cache of
Peer Group Advertisements:

JXTA>groups –f

After flushing the cached Peer Group Advertisements, executing the groups
command again should result in an empty list. Implicitly, the peer is still aware
of the default NetPeerGroup, and executing the example4_6 command clones that
group’s advertisement and publishes the resulting advertisement both locally
and remotely:

JXTA>example4_6

Another call to groups should display the newly published group:
JXTA>groups
group0: name = NewGroup

The example4_6 command sets the local lifetime to 10 seconds (10,000 millisec-
onds) when it publishes the advertisement locally:

discovery.publish(advertisement, Discovery.GROUP,
10000, 1000);

After 10 seconds, the Cache Manager clears the advertisement from the cache.
Executing the groups command again returns an empty list, as expected.

06_2344 Ch 04 5/14/02 11:34 AM Page 123

124 Chapter 4 The Peer Discovery Protocol

Summary
This chapter demonstrated how the JXTA platform manages peer discovery
and how the Java reference implementation provides a developer with the
capability to send Discovery Query Messages to other peers and process the
Discovery Responses Messages sent in response to queries.

In addition to performing discovery, the DiscoveryService interface and the
implementation provided by the Java reference implementation can be used to
publish advertisements to both the local cache and remote peers.

In the next chapter, you explore the Peer Resolver Protocol and the
Resolver service.The Peer Resolver Protocol allows a peer to process and
respond to generic queries.As you’ll see, the Peer Resolver Protocol and the
Resolver service provide the Discovery service with the capability to send
queries to remote peers, process queries from other peers, and send responses
to queries.

06_2344 Ch 04 5/14/02 11:34 AM Page 124

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Resolver Protocol

5

CHAPTER 4,“THE PEER DISCOVERY PROTOCOL,” showed how to discover peers
and advertisements using the Discovery service, but it did not address how
the Discovery service handles sending and receiving messages.The Discovery
service isn’t responsible for sending its Discovery Query and Response
Messages. Instead, the Discovery service is built on top of another service,
the Resolver service, which handles sending and receiving messages for the
Discovery service.

This chapter details the Peer Resolver Protocol (PRP) and the Resolver
service that implements the protocol.The PRP defines a protocol for sending
a generic query to a named handler located on another peer and processing a
generic response to a query. Other services in JXTA, such as the Discovery
service, build on the capabilities of the Resolver service and the PRP to
provide higher-level services.

07_2344 Ch 05 5/14/02 11:36 AM Page 125

126 Chapter 5 The Peer Resolver Protocol

Introducing the Peer Resolver Protocol
The Discovery service detailed in Chapter 4 described two types of messages:
one for sending a discovery query and another for sending a response to a dis-
covery query.The deceptive simplicity of the discovery messages hides several
layers of abstraction that insulate the developer from the inner complexities
of the JXTA protocols.To develop new solutions built on top of the JXTA
platform, it’s essential to understand these layers.

When a peer sends a Discovery Query Message using the
getRemoteAdvertisements method, the DiscoveryService implementation doesn’t
simply create a Discovery Query Message and pass it over the network itself.
Instead, the Discovery service uses another service, the Resolver service, to
handle the details of sending the message on its behalf.The Resolver service
provides an implementation of the PRP, which defines how peers can
exchange query and response messages.

The Resolver service is responsible for wrapping a query string in a more
generic message format and sending it to a specific handler on a remote peer.
In the case of the Discovery service, the query string is the Discovery Query
Message and the handler is the remote peer’s Discovery service. On the
remote peer, a Resolver service instance is responsible for passing an incoming
message to the appropriate handler and sending any response generated by the
handler.

In the general case, the Resolver service needs only two types of messages:
n Resolver Query Message—A message format for sending queries
n Resolver Response Message—A message format for sending responses

to queries

These two message formats define generic messages to send queries and
responses between peers, as shown in Figure 5.1.At each end, a handler regis-
tered with a peer group’s Resolver service instance processes query strings and
generates response strings.

Like the Peer Discovery Protocol, a query is sent to known peers and prop-
agated through known rendezvous peers.Any peer’s Resolver service that
receives a Resolver Query Message attempts to find a registered handler for
the query. If a matching handler is found, the Resolver passes it the message
and manages sending the response message generated by the handler.

07_2344 Ch 05 5/14/02 11:36 AM Page 126

127Introducing the Peer Resolver Protocol

Figure 5.1 Exchange of Resolver messages.

Like the Discovery service, the Resolver service does not require a response
to a Resolver Query Message.The registered handler might not generate a
response to a given query and can indicate to the Resolver service the reason
that it has not generated a response.A handler may not generate a response
because it has decided that the query is invalid in some way. In this case, the
query is not propagated to other peers.A handler might also indicate that it
wants to learn the response generated by other peers in response to the query.
To accomplish this, the handler can ask the Resolver service to resend the
query in a manner that will allow it to receive the response generated by other
peers.

Although the PRP is the default resolver protocol used by the JXTA refer-
ence implementation, developers can provide their own custom resolver
mechanism.A developer might want to provide his own resolver mechanism
to incorporate additional information that provides a better or more efficient
service.This custom solution could be built independently of the PRP or
could be built on top of the PRP.

1. Peer 1 sends a

Resolver Query Messaage

to all of its known simple

peers and rendezvous

peers.

2. The Resolver service

on a rendezvous peer

receiving the query

searches for a registered

Resolver handler. If

handler is found, the

handler is invoked, and

the resulting Resolver

Response Message is

sent to the peer making

the original query. The

query is also propagated

to other known peers.

3. The Resolver service on a

simple peer receiving the

query searches for a

registered Resolver handler.

If a handler is found, the

handler is invoked, and the

resulting Resolver Response

Message is sent to the peer

making the original query.

Peer 1

Simple Peer 1

Simple Peer 2

Simple Peer 3

Rendezvous Peer 1

07_2344 Ch 05 5/14/02 11:36 AM Page 127

128 Chapter 5 The Peer Resolver Protocol

The Resolver Query Message
Queries to other peers are wrapped inside a Resolver Query Message using
the format shown in Listing 5.1.

Listing 5.1 Resolver Query Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:ResolverQuery xmlns:jxta=”http://jxta.org”>

<HandlerName> . . . </HandlerName>

<Credential> . . . </Credential>

<QueryID> . . . </QueryID>

<SrcPeerID> . . . </SrcPeerID>

<Query> . . . </Query>

</jxta:ResolverQuery>

The elements in the Resolver Query Message provide all the details that a
peer’s Resolver service needs to match the query to a registered handler:

n HandlerName—A required element containing a unique name specifying
the name of the handler that the Resolver service on the destination
peer should invoke to process the query. Because the Resolver service
provides service within the context of a peer group, a handler name must
be unique within a peer group. Only one handler of a given name
should be registered on a given peer in a peer group, and this assumption
is enforced in the Java reference implementation. If a second handler is
registered with the Resolver for a peer group using a duplicate handler
name, the first handler registered with the Resolver service is removed.

n Credential—An optional element containing an authentication token that
identifies the source peer and its authorization to send the query to the
peer group.

n QueryID—An optional element containing a long integer, encoded as a
string, that defines an identifier for the query.This identifier should be
unique to the query.This identifier should be sent back in a response to
this query, allowing the sender to match a response to a specific query.

n SrcPeerID—A required element containing the ID of the peer sending the
query.This Peer ID uses the standard JXTA URN format, as described in
the JXTA Protocols Specification.

n Query—A required element containing the query string being sent to the
remote peer’s handler.This string could be anything; it is the responsibil-
ity of the handler to understand how to parse this query string, process
the query, and possibly generate a response message.

07_2344 Ch 05 5/14/02 11:36 AM Page 128

129Introducing the Peer Resolver Protocol

The implementation of the Resolver Query Message, as shown in Figure 5.2,
is divided in a similar manner to the Discovery Query and Response
Messages.The ResolverQueryMsg abstract class in the net.jxta.protocol package
defines the basic interface, variables for the query’s attributes, and accessors to
manipulate the attributes. Only the getDocument method is abstract, allowing
implementers to provide their own mechanism for rendering the query to a
Document instance.

The ResolverQuery class in the net.jxta.impl.protocol package provides an
implementation of getDocument capable of creating a StructuredTextDocument rep-
resentation of the query in the specified MimeMediaType. Several constructors can
create a ResolverQuery instance from a variety of input parameters, including an
InputStream, or the raw query attributes.

 ResolverQueryMsg
(from net.jxta.protocol)

queryid : int

ResolverQueryMsg()
getAdvertisementType() : java.lang.String
getHandlerName() : java.lang.String
getCredential() : java.lang.String
getQueryld() : int
getQuery() : java.lang.String
setHandlerName(name : java.lang.String) : void
setCredential(cred : java.lang.String) : void
setQueryld(id : int) : void
setQuery(query : java.lang.String) : void
setSrc(peerld : java.lang.String) : void
getSrc() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

 ResolverQuery
(from net.jxta.impl.protocol)

ResolverQuery(handlerName : java.lang.String, credential : java.lang.String, peerld : java.lang.String, queryString : java.lang.String, queeryld : int)
ResolverQuery(doc : net.jxta.document. TextElement)
ResolverQuery(stream : java.io.InputStream)
readlt(document : net.jxta.document. TextElement) : void
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
toString() : java.lang.String

Figure 5.2 The Resolver Query Message classes.

A developer can create a Resolver Query Message at any time to send a
query to a specific Resolver handler on a remote peer. For example, a call
to getRemoteAdvertisements in the reference DiscoveryService implementation
DiscoveryServiceImpl causes the DiscoveryServiceImpl to create a DiscoveryQuery
instance, wrap it in a ResolverQuery instance, and send it using the Resolver
service.

07_2344 Ch 05 5/14/02 11:36 AM Page 129

130 Chapter 5 The Peer Resolver Protocol

The Resolver Response Message
The Resolver Response Message responds to a Resolver Query Message using
the format shown in Listing 5.2.

Listing 5.2 Resolver Response Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:ResolverResponse xmlns:jxta=”http://jxta.org”>

<HandlerName> . . . </HandlerName>

<Credential> . . . </Credential>

<QueryID> . . . </QueryID>

<Response> . . . </Response>

</jxta:ResolverResponse>

The Resolver Response Message provides similar details to the Resolver
Query Message:

n HandlerName—A required element containing the name of a handler that
should be invoked by the remote peer’s Resolver service to process the
response.A different handler name from that used in the query might be
used to allow a different Resolver handler to process the response.

n Credential—An optional element containing an authentication token that
identifies the peer sending the response and its authorization to send the
response to the destination peer group.

n QueryID—An optional element containing a long integer, encoded as a
string, that defines an identifier for the query.This identifier should cor-
respond to the QueryID sent in the query that caused the peer to generate
this Resolver Response Message. If the QueryID provided in the original
query is unique to the query and the handler, the sender can match this
Resolver Response Message to the original query. Matching the response
to a given query might be necessary to provide useful functionality in a
P2P application.

n Response—A required element containing the response string being sent
to the remote peer’s handler.This string could be anything; it is the
responsibility of the handler to understand how to parse this response
string.

07_2344 Ch 05 5/14/02 11:36 AM Page 130

131The Resolver Service

In the Java reference implementation of JXTA, the abstract definition of
the Resolver Response Message is defined by ResolverResponseMsg in the
net.jxta.protocol package, as shown in Figure 5.3.The reference implementa-
tion of the abstract class is implemented by the ResolverResponse class in the
net.jxta.impl.protocol package.

ResolverResponseMsg
 (from net.jxta.protocol)

queryid : int

ResolverResponseMsg()

getAdvertisementType() : java.lang.String

getHandlerName() : java.lang.String

getCredential() : java.lang.String

getQueryld() : int

getResponse() : java.lang.String

setHandlerName(handlerName : java.lang.String) : void

setCredential(Credential : java.lang.String) : void

setQueryld(queryld : int) : void

setResponse(response : java.lang.String) : void

getDocument(as MimeType : net.jxta.document. MimeMediaType) : net.jxta.document.Document

ResolverResponse

(from net.jxta.impl.protocol)

ResolverResponse(handlerName : java.lang.String, credential : java.lang.String, queryld : int, responseString : java.lang.String)

ResolverResponse(doc : net.jxta.document. TextElement)

ResolverResponse(stream : java.io.InputStream)

readlt(doc : net.jxta.document. TextElement) : void

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

toString() : java.lang.String

Figure 5.3 The Resolver Response Message classes.

A Resolver Response Message can be used to “push” information to peers by
sending a Resolver Response Message without first receiving a Resolver
Query Message.This capability is used by the DiscoveryService implementation
DiscoveryServiceImpl to publish advertisements to remote peers whenever the
remotePublish method is called.

The Resolver Service
The Resolver service, another JXTA core service, provides a simple interface
that developers can use to send queries and responses between members of a
peer group.The Resolver service is defined by the ResolverService interface in
the net.jxta.resolver package, shown in Figure 5.4, which is derived from the
GenericResolver interface.

07_2344 Ch 05 5/14/02 11:36 AM Page 131

132 Chapter 5 The Peer Resolver Protocol

Figure 5.4 The Resolver service interfaces and classes.

The GenericResolver interface defines the methods for sending queries and
responses using implementations of ResolverQueryMsg and ResolverResponseMsg.
More important, the ResolverService interface defines the methods for register-
ing and unregistering an implementation of the net.jxta.resolver.QueryHandler
interface and associating it with a handler name.A registered QueryHandler
instance is invoked when the Resolver service receives a Resolver Query or
Response Message whose HandlerName matches the handler string used to
register the handler with the ResolverService for a peer group.

The QueryHandler Interface
The QueryHandler interface, shown in Figure 5.5, is similar to the
DiscoveryListener interface in Chapter 4. Like DiscoveryListener, the
QueryHandler interface provides a developer with a way to provide his own
mechanism for handling response messages. Unlike DiscoveryListener, the
QueryHandler interface also provides a developer with a mechanism for handling
query messages received from other peers.

 <<Interface>>
 Module
(from net.jxta.platform)

init(group : net.jxta.peergroup.PeerGroup. ID : net.jxta.id.ID, adv : net.jxta.document.Advertisement) : void
startApp(args : java.lang.String[]) : int
stopApp() : void

 <<Interface>>
 Service
(from net.jxta.service)

getinterface() : net.jxta.service.Service
getimplAdvertisement() : net.jxta.document.Advertisement

 <<Interface>>
 GenericResolver
 (from net.jxta.resolver)

sendQuery(peerld : java.lang.String, query : net.jxta.protocol.ResolverQueryMsg) : void
sendResponse(peerld : java.lang.String, response : net.jxta.protocol.ResolverResponseMsg) : void

 <<Interface>>
 ResolverService
 (from net.jxta.resolver)

registerHandle(name : java.lang.String, handler : net.jxta.resolver.QueryHandler) : net.jxta.resolver.QueryHandler
unregisterHandler(name : java.lang.String) : net.jxta.resolver.QueryHandler

ResolverServiceImpl
(from net.impl.resolver)

07_2344 Ch 05 5/14/02 11:36 AM Page 132

133The Resolver Service

Figure 5.5 The QueryHandler interface.

To begin handling queries, a QueryHandler instance first must be registered with
a peer group’s ResolverService using a unique handler name.After it is regis-
tered, a peer group’s ResolverService instance invokes the QueryHandler’s
processQuery method to process ResolverQueryMsg instances addressed to the
handler.The processQuery implementation is responsible for extracting and pro-
cessing the query string from the ResolverQueryMsg.This processing can result in
one of five outcomes:

n The processQuery method returns a populated ResolverResponseMsg object
containing the response to the query.The ResolverService instance han-
dles sending this response back to the peer that sent the original query.

n The processQuery method throws a NoResponseException, indicating that the
handler has no response to the query. If the peer is a rendezvous peer, the
ResolverService instance still propagates the query to other peers in the
peer group.

n The processQuery method throws a ResendQueryException, indicating that
the handler has no response to the query but would be interested in
learning the response given by other peers. If the peer is a rendezvous
peer, the ResolverService propagates the query message as usual to other
peers in the peer group. In addition to propagating the message, the
ResolverService instance resends the message (masquerading as the source
peer) to obtain the responses provided by other peers to the query.

n The processQuery method throws a DiscardException, indicating that the
ResolverService should discard the query entirely.The ResolverService
instance discards the query and does not propagate the query to other
peers in the peer group.A query can be discarded because the query,
despite being well formed, might be invalid in some way.

n The processQuery method throws an IOException when the handler cannot
process the query, possibly due to an error in the format of the query
string. In the reference ResolverService implementation, this exception
causes the Resolver service to act in the same manner as when a
DiscardException occurs.

<<Interface>>

QueryHandler

(from net.jxta.resolver)

processQuery(query : net.jxta.protocol.ResolverQueryMsg) : net.jxta.protocol.ResolverResponseMsg

processResponse(response : net.jxta.protocol.ResolverResponseMsg) : void

07_2344 Ch 05 5/14/02 11:36 AM Page 133

134 Chapter 5 The Peer Resolver Protocol

The QueryHandler’s processResponse method is invoked by the ResolverService to
process a ResolverResponseMsg instance. Unlike processQuery, processResponse
doesn’t produce any results or throw any exceptions. Either the response is
processed or it isn’t.The ResolverService instance doesn’t need to know any-
thing about the results of the processing.

One thing that might seem curious is that the Resolver service and the
QueryHandler interface don’t provide information on how the query or response
strings are formatted. No mechanism exists for a peer to discover how to for-
mat a query string for a given handler or what format to expect in response to
a successful query.The details of the query and response string formatting are
implicit in the implementation of the handler, and JXTA does not provide any
way of discovering how to invoke the handler.This is one area that JXTA does
not address but that could be addressed in the future by adopting one of the
forthcoming XML-based standards for service discovery, such as the Web
Services Description Language (WSDL).

Implementing a Resolver Handler
The example covered in this section creates a simple handler that allows a peer
to query a remote peer for the value of a specified base raised to a specified
power.The query string provides the base and power values in the format
shown in Listing 5.3.

Listing 5.3 The Example Query Message

<?xml version=”1.0”?>

<example:ExampleQuery xmlns:example=”http://jxta.org”>

<base> . . . </base>

<power> . . . </power>

</example:ExampleQuery>

Responses to the query provide the answer to the query using the format in
Listing 5.4.

Listing 5.4 The Example Response Message

<?xml version=”1.0”?>

<example:ExampleResponse xmlns:example=”http://jxta.org”>

<base> . . . </base>

<power> . . . </power>

<answer> . . . </answer>

</example:ExampleResponse>

07_2344 Ch 05 5/14/02 11:36 AM Page 134

135The Resolver Service

The example Resolver handler accepts a query, extracts the base and power
values, calculates the value of the base raised to the power, and returns a
response message populated with the base, power, and answer values.

Creating the Query and Response Strings

Implementing a Resolver handler requires a developer only to provide an
implementation of the QueryHandler interface and register the handler with a
peer group’s Resolver service. However, a developer should still abstract the
process of parsing query strings and formatting response strings, in the interest
of readability and maintainability.

The Discovery service, covered in Chapter 4, relies on the
DiscoveryQueryMsg, DiscoveryQuery, DiscoveryResponseMsg, and DiscoveryResponse
classes.These classes provided a mechanism for the DiscoveryService implemen-
tation to produce or consume a query or response string in a fairly abstract
fashion. For this example, there’s no need to go as far as defining both an
abstract class and an implementation for the query and response objects.The
query and response objects used in this example use a similar approach to pro-
vide encapsulated parsing and formatting functionality. Listing 5.5 shows the
source code for an object to handle parsing and formatting the query XML
shown in Listing 5.4.

Listing 5.5 Source Code for ExampleQueryMsg.java

package net.jxta.impl.shell.bin.example5_1;

import java.io.InputStream;

import java.io.IOException;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 135

136 Chapter 5 The Peer Resolver Protocol

* An example query message, which will be wrapped by a Resolver Query

* Message to send the query to other peers. The query essentially asks

* a simple math question: “What is the value of (base) raised to (power)?”

*/

public class ExampleQueryMsg

{

/**

* The base for query.

*/

private double base = 0.0;

/**

* The power for the query.

*/

private double power = 0.0;

/**

* Creates a query object using the given base and power.

*

* @param aBase the base for the query.

* @param aPower the power for the query.

*/

public ExampleQueryMsg(double aBase, double aPower)

{

super();

this.base = aBase;

this.power = aPower;

}

/**

* Creates a query object by parsing the given input stream.

*

* @param stream the InputStream source of the query data.

* @exception IOException if an error occurs reading the stream.

*/

public ExampleQueryMsg(InputStream stream) throws IOException

{

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

Listing 5.5 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 136

137The Resolver Service

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the base for the query.

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the query.

*

* @param asMimeType the desired MIME type representation for the

* query.

* @return a Document form of the query in the specified MIME

* representation.

*/

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 137

138 Chapter 5 The Peer Resolver Protocol

public Document getDocument(MimeMediaType asMimeType)

{

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleQuery”);

Element element;

element = document.createElement(

“base”, Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

return document;

}

/**

* Returns the power for the query.

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the query.

*

* @return the XML String representing this query.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc = (StructuredTextDocument)

getDocument(new MimeMediaType(“text/xml”));

doc.sendToWriter(out);

Listing 5.5 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 138

139The Resolver Service

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

Like the DiscoveryQueryMsg and DiscoveryQuery classes, the ExampleQueryMsg class
defines fields for the query, methods for rendering the message as a Document
and a String, and constructors for populating a query.The getDocument
method creates a Document for the given MimeMediaType using the
StructuredDocumentFactory class and adds the base and power fields.The toString
method provides a convenient way to render the query object to an XML
string, resulting in a query string in the format defined at the beginning of this
section.

The encapsulation of the response message format is almost identical, as
shown in Listing 5.6.

Listing 5.6 Source Code for ExampleResponseMsg.java

package net.jxta.impl.shell.bin.example5_1;

import java.io.InputStream;

import java.io.IOException;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

* An example query response, which will be wrapped by a Resolver Response

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 139

140 Chapter 5 The Peer Resolver Protocol

* Message to send the response to the query. The response contains the

* answer to the simple math question posed by the query.

*/

public class ExampleResponseMsg

{

/**

* The base from the original query.

*/

private double base = 0.0;

/**

* The power from the original query.

*/

private double power = 0.0;

/**

* The answer value for the response.

*/

private double answer = 0;

/**

* Creates a response object using the given answer value.

*

* @param anAnswer the answer for the response.

*/

public ExampleResponseMsg(double aBase, double aPower, double anAnswer)

{

this.base = aBase;

this.power = aPower;

this.answer = anAnswer;

}

/**

* Creates a response object by parsing the given input stream.

*

* @param stream the InputStream source of the response data.

* @exception IOException if an error occurs reading the stream.

*/

public ExampleResponseMsg(InputStream stream) throws IOException

{

Listing 5.6 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 140

141The Resolver Service

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“answer”))

{

answer = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the answer for the response.

*

* @return the answer value for the response.

*/

public double getAnswer()

{

return answer;

}

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 141

142 Chapter 5 The Peer Resolver Protocol

/**

* Returns the base for the query.

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the response.

*

* @param asMimeType the desired MIME type representation for

* the response.

* @return a Document form of the response in the specified MIME

* representation.

*/

public Document getDocument(MimeMediaType asMimeType)

{

Element element;

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleResponse”);

element = document.createElement(

“base”, Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

element = document.createElement(“answer”,

(new Double(getAnswer()).toString()));

document.appendChild(element);

return document;

}

/**

Listing 5.6 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 142

143The Resolver Service

* Returns the power for the query.

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the response.

*

* @return the XML String representing this response.

*/

public String toString()

{

try

{

StringWriter buffer = new StringWriter();

StructuredTextDocument document = (StructuredTextDocument)

getDocument(new MimeMediaType(“text/xml”));

document.sendToWriter(buffer);

return buffer.toString();

}

catch (Exception e)

{

return “”;

}

}

}

These objects simplify the task of creating a Resolver Query or Response
Message. For example, a developer can create a query string and wrap it in a
Resolver Query Message using only this code:

ExampleQueryMsg equery =
new ExampleQueryMsg(base, power);

ResolverQuery query = new ResolverQuery(“ExampleHandler”,
“JXTACRED”, localPeerId, equery.toString(), queryId);

The query string can be extracted and parsed using this code:
equery = new ExampleQueryMsg(

new ByteArrayInputStream((query.getQuery()).getBytes()));

07_2344 Ch 05 5/14/02 11:36 AM Page 143

144 Chapter 5 The Peer Resolver Protocol

Both of these examples demonstrate how much simpler it is to use the encap-
sulated query and response objects compared to the alternative of manually
formatting or parsing the query or response string.

Implementing the QueryHandler Interface

The task of implementing the QueryHandler interface is greatly simplified by the
query and response objects defined in the previous section. Listing 5.7 shows
the source code for the sample QueryHandler.

Listing 5.7 Source Code for ExampleHandler.java

package net.jxta.impl.shell.bin.example5_1;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import net.jxta.exception.NoResponseException;

import net.jxta.exception.DiscardQueryException;

import net.jxta.exception.ResendQueryException;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.protocol.ResolverQueryMsg;

import net.jxta.protocol.ResolverResponseMsg;

import net.jxta.resolver.QueryHandler;

/**

* A simple handler to process Resolver queries.

*/

class ExampleHandler implements QueryHandler

{

/**

* Processes the Resolver query message and returns a response.

*

* @param query the Resolver Query Message to be processed.

* @return a Resolver Response Message to send to the peer

* responsible for sending the query.

* @exception IOException throw if the query string can’t be parsed.

*/

public ResolverResponseMsg processQuery(ResolverQueryMsg query)

07_2344 Ch 05 5/14/02 11:36 AM Page 144

145The Resolver Service

throws IOException, NoResponseException, DiscardQueryException,

ResendQueryException

{

ResolverResponse response;

ExampleQueryMsg eq;

double answer = 0.0;

System.out.println(“Processing query...”);

// Parse the message from the query string.

eq = new ExampleQueryMsg(

new ByteArrayInputStream((query.getQuery()).getBytes()));

// Perform the calculation.

answer = Math.pow(eq.getBase(), eq.getPower());

// Create the response message.

ExampleResponseMsg er = new ExampleResponseMsg(eq.getBase(),

eq.getPower(), answer);

// Wrap the response message in a resolver response message.

response = new ResolverResponse(“ExampleHandler”,

“JXTACRED”, query.getQueryId(), er.toString());

return response;

}

/**

* Process a Resolver response message.

*

* @param response the Resolver Response Message to be processed.

*/

public void processResponse(ResolverResponseMsg response)

{

ExampleResponseMsg er;

System.out.println(“Processing response...”);

try

{

// Extract the message from the Resolver response.

er = new ExampleResponseMsg(

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 145

146 Chapter 5 The Peer Resolver Protocol

new ByteArrayInputStream(

(response.getResponse()).getBytes()));

// Print out the answer given in the response.

System.out.println(

“The value of “ + er.getBase() + “ raised to “

+ er.getPower() + “ is: “ + er.getAnswer());

}

catch (IOException e)

{

// This is not the right type of response message, or

// the message is improperly formed. Ignore the message,

// do nothing.

}

}

}

The QueryHandler interface’s only two methods, processQuery and
processResponse, use the objects defined in the previous section to parse and
format the query and response strings.The only real work that is done by the
ExampleHandler is the calculation of the response’s answer value using the query’s
base and power values.

Registering the Handler with the ResolverService Instance
To see the QueryHandler implementation created in the previous section in
action, an instance of ExampleHandler needs to be registered with a peer group’s
ResolverService instance.The following example shell command, shown in
Listing 5.8, registers an ExampleHandler instance with the current peer group’s
ResolverService instance and sends an ExampleQueryMsg using input values pro-
vided by the user.

Listing 5.8 Source Code for example5_1.java

package net.jxta.impl.shell.bin.example5_1;

import net.jxta.impl.protocol.ResolverQuery;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

Listing 5.7 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 146

147The Resolver Service

import net.jxta.impl.shell.ShellObject;

import net.jxta.peergroup.PeerGroup;

import net.jxta.resolver.QueryHandler;

import net.jxta.resolver.ResolverService;

/**

* A simple application to demonstrate the use of the Resolver service

* to register a QueryHandler instance and process queries.

*/

public class example5_1 extends ShellApp

{

/**

* A flag indicating if the example’s handler should be unregistered

* from the peer group’s Resolver service.

*/

private boolean removeHandler = false;

/**

* A name to use to register the example handler with the

* Resolver service.

*/

private String name = “ExampleHandler”;

/**

* The base value for the query.

*/

private double base = 0.0;

/**

* The power value for the query.

*/

private double power = 0.0;

/**

* Manages adding or removing the handler from the Resolver service.

*

* @param resolver the Resolver service with which to register or

* unregister a handler.

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 147

148 Chapter 5 The Peer Resolver Protocol

*/

private void manageHandler(ResolverService resolver)

{

if (removeHandler)

{

// Unregister the handler from the Resolver service.

ExampleHandler handler =

(ExampleHandler) resolver.unregisterHandler(name);

}

else

{

// Create a new handler.

ExampleHandler handler = new ExampleHandler();

// Register the handler with the Resolver service.

resolver.registerHandler(name, handler);

}

}

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “b:p:r”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘b’ :

{

try

Listing 5.8 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 148

149The Resolver Service

{

// Obtain the “base” element for the query.

base = (new Double(

parser.getOptionArg())).doubleValue();

}

catch (Exception e)

{

// Default to 0.0

base = 0.0;

}

break;

}

case ‘p’ :

{

try

{

// Obtain the “power” element for the query.

power = (new Double(

parser.getOptionArg())).doubleValue();

}

catch (Exception e)

{

// Default to 0.0

power = 0.0;

}

break;

}

case ‘r’ :

{

// Remove the handler.

removeHandler = true;

break;

}

}

}

}

/**

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 149

150 Chapter 5 The Peer Resolver Protocol

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Resolver service for the current peer group.

ResolverService resolver = currentGroup.getResolverService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Manage the handler for the Resolver service. This

// adds or removes the handler as specified by the

// command-line parameters.

manageHandler(resolver);

// If we’re not removing the handler, send a query using

// the Resolver service.

if (!removeHandler)

{

Listing 5.8 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 150

151The Resolver Service

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);

String localPeerId = currentGroup.getPeerID().toString();

// Wrap the query in a resolver query.

ResolverQuery query = new ResolverQuery(“ExampleHandler”,

“JXTACRED”, localPeerId, equery.toString(), 0);

// Send the query using the resolver.

println(“Sending base=”+base+”, power=”+power);

resolver.sendQuery(null, query);

}

return result;

}

}

Of particular importance is the registration of the ExampleHandler:
// Register the handler with the Resolver service.
resolver.registerHandler(name, handler);

The name variable defines the name of the handler that identifies this handler
to the ResolverService instance. In the example5_1 command, name is set to
ExampleHandler.A Resolver Query Message or a Resolver Response Message
must use the same handler name to identify the target handler for its query or
response string.

Because a peer group’s ResolverService instance can define only one handler
with a given name, the registerHandler method replaces an existing handler.
Any handler previously registered with the ResolverService instance using the
same handler name is returned by the registerHandler method.

Sending a Resolver Query Message
To send a query, the example5_1 command creates an ExampleQueryMsg object
using the base and power values provided by the user and wraps it in a
ResolverQuery object:

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);
String localPeerId = currentGroup.getPeerID().toString();
ResolverQuery query = new ResolverQuery(“ExampleHandler”,

“JXTACRED”, localPeerId, equery.toString(), 0);

The identifier for the local peer, localPeerId, is retrieved from the PeerGroup
object holding the current peer group in the Shell when the command is
invoked.The JXTACRED string provides a value for the Credential in the

07_2344 Ch 05 5/14/02 11:36 AM Page 151

152 Chapter 5 The Peer Resolver Protocol

ResolverQuery. Currently, the JXTA reference implementation doesn’t provide
any abstract mechanism for validating credentials, although this feature is
expected in the future. Currently, developers can implement their own creden-
tial validation schemes within their QueryHandler implementations until this
shortcoming is addressed.

Finally, the Resolver Query Message is sent to all peers in the
ResolverService instance’s peer group using this line:

resolver.sendQuery(null, query);

The first parameter identifies the Peer ID for the destination of the query. If
this parameter is null, the ResolverService instance propagates the query to all
peers in the peer group.

When a Resolver service receives a Resolver Query Message, it extracts the
HandlerName, checks for a matching registered QueryHandler instance, and, if one
exists, passes the Resolver Query Message object to the handler’s processQuery
method.

Using the ExampleHandler Class
To see the example in action, two peers on the P2P network must register an
ExampleHandler instance with a specific peer group’s ResolverService instance
using the same handler name. Because it’s unlikely that another peer will be
running the example code at the same time, you must start two instances of
the Shell.To start two instances of the Shell, follow these steps:

1. Delete the PlatformConfig file and the pse and cm directories from your
Shell directory. Run the Shell, force reconfiguration using the peerconfig
command, and exit the Shell.

2. Copy the Shell subdirectory from the JXTA Demo install directory into
a directory called Shell2.This directory should be at the same directory
level as the original Shell subdirectory.

3. Compile the example’s code, and place a copy in both the Shell and
Shell2 subdirectories.This is required because the example code must
be to be available to both Shell instances.

4. Run the Shell in the Shell directory from the command line, as in
previous examples. Configure it as usual.

5. Run the Shell in the Shell2 directory from the command line, as in pre-
vious examples. In the TCP Settings section of the Advanced tab, specify
a different TCP port number (for example, 9702). In the HTTP Settings
section of the Advanced tab, specify a different HTTP port number (for
example, 9703). In the Basic tab, enter a different name for the peer.

07_2344 Ch 05 5/14/02 11:36 AM Page 152

153The Resolver Service

After each Shell has loaded, issue a peer discovery in each Shell using peers –r,
and ensure that each peer can see the other using the peers command. Each
peer must be capable of seeing the other peer’s name in the list returned by
peers for the example to work.When both peers can see each other, run the
example in the first Shell instance:

JXTA>example5_1

The command registers an ExampleHandler with the current peer group’s
Resolver service and sends a default query.The default query for the example
uses a value of 0.0 for both the base and the power attributes. No response to
this query is received because probably no other peer on the system at this
time has a matching handler registered with its Resolver service for the cur-
rent peer group.

Run the example in the second Shell instance to register a handler.This
time, the default query is handled by the ExampleHandler registered in the first
Shell instance.The first Shell’s ExampleHandler instance prints to the command
console (not the Shell console):

Processing query...

This indicates that the Resolver service has received a query and passed it to
the processQuery method of the ExampleHandler.The ExampleHandler’s processQuery
method has been invoked correctly, and the handler is processing the query.
When the handler returns a response, the Resolver service sends it back to the
second Shell instance’s peer.When this response is received by the second Shell
instance, ExampleHandler prints the results to the command console (again, not
to the Shell console):

Processing response...
The value of 0.0 raised to the power 0.0 is: 1.0

This indicates that the processResponse method of the ExampleHandler registered
in the second Shell has been invoked by the Resolver service correctly. Now
that both peers have registered a handler, try sending a more meaningful query
using this line:

JXTA>example5_1 –b4 –p2

The query asks other peer for the value of 4 raised to the power 2.The other
peer should respond with the value 16.

Unregistering the Handler

When an application no longer wants a handler to receive messages, it can
unregister the handler from the Resolver service.To unregister the handler,

07_2344 Ch 05 5/14/02 11:36 AM Page 153

154 Chapter 5 The Peer Resolver Protocol

the unregister method is called using the name originally used to register to
handler:

ExampleHandler handler = (ExampleHandler)
resolver.unregisterHandler(name);

Unregistering the handler returns the QueryHandler instance that the
ResolverService has unregistered. If the call to unregister returns null, the
ResolverService instance cannot find any registered handler instance with
the given name.

Sending Responses
The example4_6 command developed in the Chapter 4 showed how the
Discovery service can be used to publish advertisements to other peers using
the remotePublish method.To do this, the Discovery service sends a Discovery
Response Message using the ResolverService’s sendResponse method:

public void sendResponse(String destPeer, ResolverResponseMsg response);

The sendResponse method allows a peer to send a Resolver Response Message
without first receiving a Resolver Query Message. Using this method, the
example given in Listing 5.9 allows a peer to publish answers to other peers.

Listing 5.9 Source Code for example5_2.java

package net.jxta.impl.shell.bin.example5_2;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

import net.jxta.impl.shell.bin.example5_1.ExampleResponseMsg;

import net.jxta.peergroup.PeerGroup;

import net.jxta.resolver.ResolverService;

/**

* A simple application to demonstrate the use of the Resolver service to

* send a Resolver Response Message without first receiving a Resolver

* Query Message.

07_2344 Ch 05 5/14/02 11:36 AM Page 154

155The Resolver Service

*/

public class example5_2 extends ShellApp

{

/**

* The base value for the response.

*/

private double base = 0.0;

/**

* The power value for the response.

*/

private double power = 0.0;

/**

* The answer value for the response.

*/

private double answer = 0;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “b:p:a:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘b’ :

{

try

{
continues

07_2344 Ch 05 5/14/02 11:36 AM Page 155

156 Chapter 5 The Peer Resolver Protocol

// Obtain the “base” element for the response.

base = (new Double(

parser.getOptionArg())).doubleValue();

}

catch (Exception e)

{

// Default to 0.0

base = 0.0;

}

break;

}

case ‘p’ :

{

try

{

// Obtain the “power” element for the response.

power = (new Double(

parser.getOptionArg())).doubleValue();

}

catch (Exception e)

{

// Default to 0.0

power = 0.0;

}

break;

}

case ‘a’ :

{

try

{

// Obtain the “answer” element for the response.

answer = (new Double(

parser.getOptionArg())).doubleValue();

}

catch (Exception e)

{

// Default to 0.0

Listing 5.9 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 156

157The Resolver Service

answer = 0.0;

}

break;

}

}

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Resolver service for the current peer group.

ResolverService resolver = currentGroup.getResolverService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

return ShellApp.appParamError;

}

continues

07_2344 Ch 05 5/14/02 11:36 AM Page 157

158 Chapter 5 The Peer Resolver Protocol

String localPeerId = currentGroup.getPeerID().toString();

ExampleResponseMsg eresponse =

new ExampleResponseMsg(base, power, answer);

ResolverResponse pushRes = new ResolverResponse(“ExampleHandler”,

“JXTACRED”, 0, eresponse.toString());

// Print out the information we’re about to send.

System.out.println(

“Sending: base=” + base + “, power=” + power

+ “, answer=” + answer);

// Send the response using the resolver.

resolver.sendResponse(null, pushRes);

return result;

}

}

A Resolver Response Message is created by the command in a similar fashion
to the ExampleHandler’s processQuery method in the previous example:

ExampleResponseMsg eresponse =
new ExampleResponseMsg(base, power, answer);

ResolverResponse pushRes = new ResolverResponse(“ExampleHandler”,
“JXTACRED”, 0, eresponse.toString());

Using the arguments passed to the command, the example5_2 command wraps
an ExampleResponseMsg in a ResolverResponse message. Unlike the previous exam-
ple, the response is sent using the ResolverService directly:

resolver.sendResponse(null, pushRes);

The first parameter to the sendResponse method specifies a destination peer, in
the form of a Peer ID String. If this string is null, the ResolverService instance
sends the response message to every known peer and propagates the message
via known rendezvous peers.

To test the example, start two Shell instances using the procedure given in
the previous example. Register an ExampleHandler in each instance using the
example5_1 command and then invoke the example5_2 command in the first
Shell instance using this line:

JXTA>example5_2 –b4 –p2 –a16

Listing 5.9 Continued

07_2344 Ch 05 5/14/02 11:36 AM Page 158

159Summary

This command sends an ExampleResponseMsg to all known peers, using a base
value of 4, a power value of 2, and an answer value of 16.The second Shell
instance receives the message, and the Resolver service invokes the
ExampleHandler to print a message to the system:

The value of 4.0 raised to the power 2.0 is: 16.0

The example5_2 command enables a user to send a response without requiring
a query first, allowing a peer to publish an answer before the question has
been asked. One of the interesting things to note here is that a peer can pro-
vide incorrect answers! This is actually a core problem in P2P computing that
is currently the subject of much discussion.

Summary
In this chapter, you learned that the Resolver service is used as a building
block by the Discovery service to provide a more generic message-handling
framework. Using the Resolver service, you should now be able to create and
register handlers to provide your own functionality to a peer group.

In the next chapter, you explore the Rendezvous Protocol and the
Rendezvous service. Despite its name, the Rendezvous service is not solely
used to provide rendezvous peer services to other peers.The Rendezvous
service is a building block that can also be used by services on a peer to prop-
agate messages to other peers within the same peer group. For example, the
Resolver service explored in this chapter used the Rendezvous service to
propagate queries to remote peers.The next chapter details the protocol
behind the Rendezvous service and how it can be used by developers to
handle propagating messages to other peers.

07_2344 Ch 05 5/14/02 11:36 AM Page 159

07_2344 Ch 05 5/14/02 11:36 AM Page 160

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Rendezvous Protocol

6

IN CHAPTER 5,“THE PEER RESOLVER PROTOCOL,” you learned that the Resolver
service provides the foundation for the Discovery’s service’s capability to query
remote peers and respond to queries from remote peers. Just as the Discovery
service relies on the capabilities of the Resolver service, the Resolver service
relies on the capabilities of another service: the Rendezvous service.The
Rendezvous service is responsible not only for allowing a user to propagate
messages to other peers via a rendezvous peer, but also for providing ren-
dezvous peer services to other peers on the network.

This chapter explains the Rendezvous Protocol (RVP) that simple peers use
to connect to rendezvous peers to propagate messages to other peers on their
behalf.As you’ll see, the Rendezvous service implementation of the RVP has a
dual role, providing a unified API for propagating messages, independent of
whether a peer is configured to act as a rendezvous peer.

08_2344 Ch 06 5/14/02 11:38 AM Page 161

162 Chapter 6 The Rendezvous Protocol

Introducing the Rendezvous Protocol
Chapter 2,“P2P Concepts,” introduced the concept of a rendezvous peer, a
peer used to propagate messages within a peer group on another peer’s behalf.
In JXTA, a rendezvous peer provides simple peers in private networks with
the capability to broadcast messages to other members of a peer group outside
the private network.This functionality is independent of the underlying net-
work transport, allowing message propagation over transports that don’t sup-
port multicast or broadcast capabilities.

Before a peer can use a rendezvous peer to propagate messages, it must con-
nect to the rendezvous peer and obtain a lease.A lease specifies the amount of
time that the peer requesting a connection to the rendezvous peer is allowed
to use the rendezvous peer before it must renew the connection lease.To han-
dle the interactions required to provide this functionality, the RVP defines
three message formats:

n Lease Request Message—A message format used by a peer to request
a connection lease to the rendezvous peer

n Lease Granted Message—A message format used by the rendezvous
peer to approve a peer’s Lease Request Message and provide the length
of the lease

n Lease Cancel Message—A message format used by a peer to
disconnect from the rendezvous peer

Unlike previous protocols, these messages are not specifically defined in terms
of XML; instead, they are defined in terms of message elements.As in XML,
message elements consist of a name and the contents of the element, and they
can be nested.These message elements are used by the Endpoint service, dis-
cussed in Chapter 9,“The Endpoint Routing Protocol,” to render messages
into a format suitable for transmission over a specific network transport.
Although the Endpoint service can render these message elements into XML,
in most cases, it is more efficient to render the message elements into a more
compact binary representation for transmission.

To connect with a rendezvous peer, a peer uses the sequence of messages
shown in Figure 6.1.

08_2344 Ch 06 5/14/02 11:38 AM Page 162

163Introducing the Rendezvous Protocol

Figure 6.1 Exchange of RVP messages.

Of course, before a peer can even begin the process of connecting to a ren-
dezvous peer, it must discover the rendezvous peer by finding its Rendezvous
Advertisement.After a rendezvous peer has been discovered, the peer sends
requests to the rendezvous peer using the Endpoint service, addressing requests
using JxtaPropagate as the service name and the ID of the peer group for
which the peer is requesting rendezvous services as the service parameter.
Endpoint service names and parameters are detailed in Chapter 9’s explanation
of the Endpoint service.

The Rendezvous Advertisement
Peers that want to act as a rendezvous peer announce their capabilities to the
network by publishing a Rendezvous Advertisement, as shown in Listing 6.1.

Listing 6.1 The Rendezvous Advertisement XML

<?xml version=”1.0”?>

<jxta:RdvAdvertisement xmlns:jxta=”http://jxta.org”>

<RdvGroupId> . . . </RdvGroupId>

<RdvPeerId> . . . </RdvPeerId>

<Name> . . . </Name>

</jxta:RdvAdvertisement>

Rendezvous Peer 1

1.

Peer 2

Peer 1

Peer 3

Rendezvous Peer 2

6. A rendezvous peer might

be a client of other rendezvous

peers. In this scenario,

Rendezvous Peer 1 is connected

to Rendezvous Peer 2 and uses

Rendezvous Peer 2 to propagate

the message to peers that are

also connected to Rendezvous

Peer 2.

7. Even peers not acting as

rendezvous peers will propagate

messages. In this case, the

propagation will be limited to the

local LAN segment.

Peer 1 wants to use

Rendezvous Peer 1 to

propagate a message

within a peer group on

its behalf. It must first

obtain a connection

lease with the rendezvous

peer by sending a Lease

Request Message.

2. Upon receiving the

Lease Request Message,

the rendezvous peer

decides whether to grant

a connection lease. If it

does, it generates a

connection lease and sends

a Lease Granted Message

to the requesting peer.

3. Peer 1 receives the

Lease Granted Message.

It can now send messages

to the rendezvous peer

for propagation to other

peers.

4. When the rendezvous

peer receives a message

to propagate, it checks that

the source has already

been granted a

lease. If it has, the

rendezvous peer

propagates the message

to each of the other peers

that currently hold a

connection lease with the

rendezvous peer. The

rendezvous will also

propagate the message

on the local LAN segment

using TCP multicast/

broadcast.

5. Peers recieve the

propagated message

and route the received

message to the service

specified by the message's

RendezVousPropagateMessage

element.

also

08_2344 Ch 06 5/14/02 11:38 AM Page 163

164 Chapter 6 The Rendezvous Protocol

The Rendezvous Advertisement provides all the details that a peer needs to
find a rendezvous peer to use to propagate messages on its behalf:

n RdvGroupId—A required element containing the ID of the peer group to
which the peer is providing Rendezvous services.

n RdvPeerId—A required element containing the ID of the peer providing
Rendezvous services to the specified peer group.

n Name—An optional element containing a symbolic name for the ren-
dezvous peer.This name could be used by other peers to search for the
rendezvous peer.

As shown in Figure 6.2, in the reference implementation, the Rendezvous
Advertisement is represented by the RdvAdvertisement abstract class in the
net.jxta.protocol package and is implemented by the RdvAdv class in
net.jxta.impl.protocol.

RdvAdvertisement
(from net.jxta.protocol)

name : java.lang.String

RdvAdvertisement()

getAdvertisementType() : java.lang.String

getGroupID() : net.jxta.peergroup.PeerGroupID

getName() : java.lang.String

getPeerID() : net.jxta.peer.PeerID

setGroupID(groupId : net.jxta.peergroup.PeerGroupID) : void

setName(name : java.lang.String) : void

setPeerID(peerId : net.jxta.peer.PeerID) : void

RdvAdv

(from net.jxta.impl.protocol)

RdvAdv()

RdvAdv(doc : net.jxta.document.Element)

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

getID() : net.jxta.id.ID

initialize(doc : net.jxta.document.Element) : void

Figure 6.2 The Rendezvous Advertisement classes.

A peer can find rendezvous peers by sending a Discovery Query Message for
Rendezvous Advertisements.To use the Discovery service in the reference
implementation to search for Rendezvous Advertisements for a specific peer
group, use this code:

discovery.getRemoteAdvertisements(null, 2, “RdvGroupId”,
currentGroup.getPeerGroupID().toString(),
threshold, aListener);

08_2344 Ch 06 5/14/02 11:38 AM Page 164

165Introducing the Rendezvous Protocol

This query searches for advertisements (type = 2) that match the attribute
RdvGroupId to the value of the given Peer Group ID.The responses to the
Discovery Query Message are passed to the DiscoveryListener instance,
aListener, for processing.The DiscoveryService instance used here is the
Discovery service of the parent peer group used to create the peer group
associated with the rendezvous peer.

Lease Request Message
When a peer has discovered a Rendezvous Advertisement and the rendezvous
peer’s corresponding Peer Advertisement, a peer can connect to the rendez-
vous peer and request a connection lease. If the rendezvous peer grants the
request, the rendezvous peer adds the peer to its set of authorized peers.These
authorized peers are allowed to use the rendezvous peer to propagate messages
to other peers that are also connected to the rendezvous peer.

To request a connection lease from a rendezvous peer, a peer sends its own
Peer Advertisement as the contents of a message element named jxta:Connect,
as detailed in Table 6.1.

Table 6.1 The Lease Request Message

Element Name Element Content

jxta:Connect The Peer Advertisement of the peer requesting a
connection lease from the rendezvous peer.

The Peer Advertisement content of the message element always is rendered as
XML, independent of how the Endpoint service renders the message element.
For example, the Endpoint service could render the Lease Grant Message as an
XML message:

<jxta:Connect>
<jxta:PA xmlns:jxta=”http://jxta.org”>
. . .

</jxta:PA>
</jxta:Connect>

The Endpoint service could even compress this string to produce a pure
binary representation of the message element. However, regardless of how the
message element is rendered, the message element’s Peer Advertisement itself
always is an XML document.

08_2344 Ch 06 5/14/02 11:38 AM Page 165

166 Chapter 6 The Rendezvous Protocol

Lease Granted Message
If the rendezvous peer approves the peer’s request for a connection lease, the
requesting peer is added to the rendezvous peer’s set of connected peers.The
rendezvous peer responds to the requesting peer with a set of message ele-
ments collectively called the Lease Granted Message.The Lease Granted
Message contains the rendezvous peer’s Peer ID and a lease time, and it might
contain the rendezvous peer’s Peer Advertisement, as detailed in Table 6.2.

Table 6.2 The Lease Granted Message

Element Name Element Content

jxta:RdvAdvReply An optional message element containing the Peer
Advertisement of the rendezvous peer granting
the lease

jxta:ConnectedPeer A required message element containing the Peer
ID of the rendezvous peer granting the lease

jxta:ConnectedLease A required message element containing a string
representation of the lease time, in milliseconds

The lease time specifies the amount of time, in milliseconds, before a con-
nected peer is removed from the rendezvous peer’s set of connected peers.
Peers that are connected to the rendezvous peer receive messages propagated
by the rendezvous peer on behalf of other peers. Peers that are also located on
the same LAN segment as the rendezvous peer receive the propagated message
via TCP multicast. If a peer is located on the same LAN segment as the ren-
dezvous peer, it receives a propagated message twice, once via direct
communication by the rendezvous peer and once via TCP multicast.

Lease Cancel Message
When a peer no longer wants to use a rendezvous peer, it can cancel its con-
nection lease, thereby removing itself from the rendezvous peer’s set of con-
nected peers.After it is removed, a peer can no longer use the rendezvous peer
to propagate messages, nor will it receive messages propagated by the ren-
dezvous peer on another peer’s behalf.

To cancel the connection lease, a peer sends a message containing a
jxta:Disconnect message element, as detailed in Table 6.3.

08_2344 Ch 06 5/14/02 11:38 AM Page 166

167Introducing the Rendezvous Protocol

Table 6.3 The Lease Cancel Message

Element Name Element Content

jxta:Disconnect The Peer Advertisement of the peer requesting
removal from the rendezvous peer’s set of
connected peers

The rendezvous peer removes the peer from its list of connected peers but
does not provide any response to the peer.

Controlling Message Propagation
In Chapter 2, I noted the possibility for propagation to result in loopbacks,
messages propagating infinitely between peer and rendezvous peers connected
in a closed loop.As detailed in Chapter 2, loopback can be prevented by using
a Time To Live (TTL) value that gets decremented each time a message is
propagated.When the TTL reaches 0, the message is no longer propagated.

The RVP defines a message element to hold information that allows a
rendezvous peer to detect loopback and discard the duplicate message.The
contents of the message element include a RendezVous Propagate Message
document, as shown in Listing 6.2.

Listing 6.2 The RendezVous Propagate Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:RendezVousPropagateMessage>

<MessageId> . . . </MessageId>

<DestSName> . . . </DestSName>

<DestSParam> . . . </DestSParam>

<TTL> . . . </TTL>

<Path> . . . </Path>

</jxta:RendezVousPropagateMessage>

The contents of the RendezVous Propagate Message provide details about the
service to which the message should be propagated and where the message has
already been propagated:

n MessageId—A required element containing a unique identifier for the
message being propagated. In the reference implementation, this is simply
the time, in milliseconds, since the epoch, when the message is initially
propagated.The reference implementation assumes the likelihood that
two messages are being propagated within the same peer group at the
same time and are sufficiently small to make this value unique.

08_2344 Ch 06 5/14/02 11:38 AM Page 167

168 Chapter 6 The Rendezvous Protocol

n DestSName—A required element containing the name of the destination
service for the propagated message.

n DestSParam—A required element containing the parameters for the desti-
nation service for the propagated message.

n TTL—A required element containing the propagated message’s current
TTL.The rendezvous peer discards the message if the message’s TTL is 0.

n Path—An optional element containing the Peer ID of a peer that the
message being propagated has already visited.There can be more than
one Path element, each specifying a waypoint in the message’s propaga-
tion path.The rendezvous peer does not propagate a message to any
peer that is contained in any of the RendezVous Propagate Message’s
Path elements.

For a message being propagated, the RendezVous Propagate Message is added
to a message element with a name consisting of the concatenation of
RendezVousPropagate and the ID of the peer group for which the rendezvous
peer is providing Rendezvous services.

The Rendezvous Service
As shown in Figure 6.3, the Rendezvous service provides the implementation
of the RVP, providing the functionality both to run a rendezvous peer and to
propagate a message using a Rendezvous peer.

<<Interface>>

RendezVousService

(from net.jxta.rendezvous)

connectToRendezVous(adv : net.jxta.protocol.PeerAdvertisement) : void

connectToRendezVous(addr : net.jxta.endpoint.EndpointAddress) : void

disconnectFromRendezVous(peerId : net.jxta.peer.PeerID) : void

setMonitor(monitor : net.jxta.rendezvous.RendezVousMonitor) : net.jxta.rendezvous.RendezVousMonitor

getConnectedRendezVous() : java.util.Enumeration

getDisconnectedRendezVous() : java.util.Enumeration

startRendezVous(manager : net.jxta.rendezvous.RendezVousManager) : void

startRendezVous() : void

stopRendezVous() : void

getConnectedPeers() : java.util.Enumeration

sendRendezVousAdv(destpeer : net.jxta.protocol.PeerAdvertisement, rdv : net.jxta.protocol.PeerAdvertisement) : void

addPropagateListener(name : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

removePropagateListener(name : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

addListener(listener : net.jxta.rendezvous.RendezvousListener) : void

removeListener(listener : net.jxta.rendezvous.RendezvousListener) : boolean

propagate(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int) : void

propagateToNeighbors(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int, prunepeer : java.lang.String) void

propagateInGroup(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int, prunepeer : java.lang.String) : void

isConnectedToRendezVous() : boolean

isRendezVous() : boolean

RendezVousServiceImpl

(from net.jxta.impl.rendezvous)

Figure 6.3 The Rendezvous service interfaces and classes.

08_2344 Ch 06 5/14/02 11:38 AM Page 168

169The Rendezvous Service

When not configured to act as a rendezvous peer, a peer can use its
Rendezvous service to propagate messages within a peer group using ren-
dezvous peers to which it is connected.The peer can also use the Rendezvous
service to propagate messages to peers in the same peer group using network
transports that support multicasting within the LAN segment.When config-
ured as a rendezvous peer, the Rendezvous service has the additional capability
to propagate messages to other rendezvous and simple peers in the peer group
on behalf of its set of connected peers.

Propagating Messages
The Rendezvous service’s main functionality is to allow a peer to propagate
messages to other peers on the network.This functionality is augmented when
a Rendezvous service is configured to provide rendezvous peer services to
other peers in the peer group. Regardless of whether a Rendezvous service is
configured to provide rendezvous peer services, the RendezVousService interface
provides three methods for propagating messages, as shown in Listing 6.3.

Listing 6.3 The RendezVousService Message Propagation Methods

public void propagate (Message msg, String serviceName,

String serviceParam, int defaultTTL) throws IOException;

public void propagateInGroup (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer)

throws IOException;

public void propagateToNeighbors (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer)

throws IOException;

Each method provides a slightly different way of propagating a message to
other peers in the peer group.All methods have the following parameters in
common:

n msg—The Message object to be propagated to other peers.
n serviceName—A unique service name that identifies the service on the

remote peer that is responsible for handling the Message object. In the ref-
erence implementation, this is set to the Module Class ID for the service.
Modules and module classes are discussed in Chapter 10,“Peer Groups
and Services.”

n serviceParam—A parameter providing a name for a message queue.The
service can use this parameter to route the handling of a message to the
appropriate service instance.

08_2344 Ch 06 5/14/02 11:38 AM Page 169

170 Chapter 6 The Rendezvous Protocol

n defaultTTL—A default Time To Live (TTL) value to be used when send-
ing the Message.This TTL is used only if the Message doesn’t currently
have a TTL value. Otherwise, the propagation methods handle decre-
menting the Message’s TTL. In the reference implementation, the value
passed as a default TTL can’t be greater than the maximum TTL value of
10. If the default TTL passed is larger than the maximum, it is set to the
maximum TTL.

Both propagateInGroup and propagateToNeighbors take an extra argument,
prunePeer, that specifies the Peer ID of a peer that should not be included in
the propagation.The current reference implementation ignores this argument.

Each of the propagation methods has a slightly different purpose:
n propagateToNeighbors—This method propagates the Message to peers on

the local network. In the reference implementation, a neighbor is a peer
on the network that the rendezvous can communicate with directly,
without going through a router peer.This method relies on the Endpoint
service to broadcast the message to peers on the local LAN segment
using available network transports.

n propagateInGroup—This method propagates the Message to all peers
in the peer group.This method duplicates the functionality of
propagateToNeighbors but also propagates the given Message to each ren-
dezvous peer with which the peer has a connection lease. If the local
peer is configured to act as a rendezvous peer, this method also propa-
gates the given Message to each peer that has a connection lease with the
local peer.

n propagate—The documentation for the Java implementation gives the
same description for this method as propagateInGroup. However, the refer-
ence implementation uses this method as a convenience method:When
the passed defaultTTL is 1, propagate calls propagateToNeighbors. Otherwise,
propagate calls propagateInGroup.

The propagation methods are all responsible not only for setting the Message’s
TTL, but also for adding a message element containing the RendezVous
Propagate Message to prevent against loopback.

Receiving Propagated Messages
The Rendezvous service is not responsible for blindly repropagating messages
that it receives; instead, it serves only to propagate a message one network hop
to another peer. It is the responsibility of a service on the peer to decide

08_2344 Ch 06 5/14/02 11:38 AM Page 170

171The Rendezvous Service

whether to repropagate the message. For example, the ResolverService imple-
mentation described in Chapter 5 repropagates a message only if the
QueryHandler implementation’s processQuery method doesn’t throw a
DiscardQueryException.

To allow a service to listen for propagated messages and decide whether
to repropagate the message, the RendezVousService interface defines the
addPropagateListener method:

public void addPropagateListener(String serviceNamePlusParameters,
EndpointListener listener)

throws IOException;

The addPropagateListener method registers an instance of EndpointListener, an
interface described in Chapter 9, with the RendezVousService instance.The lis-
tener object is notified via its processIncomingMessage method when the
Endpoint service receives a propagated message that matches the service name
and parameters passed to addPropagateListener.

When an EndpointListener instance is notified of the arrival of a propagated
message, it can repropagate the message by invoking the propagateInGroup
method on a RendezVousService instance.The RendezVousService implementation
handles updating the message’s RendezVous Propagate Message with new TTL
and path information.

When notification of propagated messages is no longer required, the
EndpointListener instance can be unregistered from the RendezVousService
using the removePropagateListener method:

public void removePropagateListener(String serviceNamePlusParameters,
EndpointListener listener)

throws IOException;

To remove a listener object successfully, the parameters passed to
removePropagateListener must match those used to register the listener using
addPropagateListener.

Connecting to and Disconnecting from Rendezvous Peers
The process of obtaining or cancelling a connection lease with a rendezvous
peer is conducted entirely via the RendezVousService interface.To obtain a con-
nection lease with a remote rendezvous peer, a peer invokes this code:

public void connectToRendezVous (PeerAdvertisement adv) throws IOException;

Instead of using a Peer Advertisement, a peer can use an EndpointAddress to
specify the remote rendezvous peer from which to obtain a connection lease:

public void connectToRendezVous (EndpointAddress addr) throws IOException;

08_2344 Ch 06 5/14/02 11:38 AM Page 171

172 Chapter 6 The Rendezvous Protocol

The EndpointAddress is an abstraction of a network location that can be either
network transport-neutral or transport-specific. Endpoint addresses are dis-
cussed in Chapter 9.When a peer has obtained a connection lease, the peer
can cancel the lease granted by a remote rendezvous peer using this line:

public void disconnectFromRendezVous (PeerID peerID);

Cancelling the lease with a rendezvous peer requires the Peer ID of the
rendezvous peer.

The RendezvousListener and RendezvousEvent Classes
The Rendezvous service provides a RendezvousListener interface, as shown in
Figure 6.4, that developers can implement to monitor the Rendezvous service.
Registered RendezvousListener objects are notified when the Rendezvous ser-
vice connects and disconnect from a rendezvous peer and when client peers
connect or disconnect.

 <<Interface>>
 RendezvousListener
(from net.jxta.rendezvous)

rendezvousEvent(event : net.jxta.rendezvous.RendezvousEvent) : void

 RendezvousEvent
(from net.jxta.rendezvous)

RDVCONNECT : int = 0
RDVRECONNECT : int = 1
CLIENTCONNECT : int = 2
CLIENTRECONNECT : int = 3
RDVDISCONNECT : int = 4
RDVFAILED : int = 5
CLIENTDISCONNECT : int = 6
CLIENTFAILED : int = 7

RendezvousEvent(source : java.lang.Object, type : int, peerId : java.lang.String)
getType() : int
getPeer() : java.lang.String

Figure 6.4 The RendezvousListener and RendezvousEvent classes.

The RendezvousEvent represents events fired by the RendezVousService when it is
either acting as a client to another rendezvous peer or acting as a rendezvous
peer to a client peer.The RendezvousEvent.getType method returns one of
several possible values to inform the RendezvousListener what event has tran-
spired.Type names starting with CLIENT indicate events triggered by the
Rendezvous service handling a client peer message.Type names starting with

08_2344 Ch 06 5/14/02 11:38 AM Page 172

173The Rendezvous Service

RDV indicate events triggered by the Rendezvous service receiving a response
to messages sent to a remote rendezvous peer. In total, eight possible values are
returned by RendezvousEvent.getType:

n CLIENTCONNECT—The Rendezvous service has successfully processed a
client peer’s Connect request.

n CLIENTDISCONNECT—The Rendezvous service has successfully processed a
client peer’s Disconnect request.

n CLIENTRECONNECT—This is not currently used in the reference implementa-
tion. It indicates that the Rendezvous service has successfully processed a
client peer’s Connect request. In this case, the client peer was already
connected to the rendezvous peer but is connecting to renew its lease
with the rendezvous peer. Most likely, this will be used when the lease
time is used correctly.

n CLIENTFAILED—This also is not currently used in the reference implemen-
tation. It indicates that the Rendezvous service has unsuccessfully
processed a client’s Connect request.

n RDVCONNECT—The Rendezvous service, acting as a client peer, has received
a response to its Connect request indicating that it is now connected to a
rendezvous peer.

n RDVDISCONNECT—The Rendezvous service has successfully disconnected
from a remote rendezvous peer.This event is not fired as a result of a
response from the rendezvous peer, but it is fired immediately after the
Disconnect request is sent to the rendezvous peer.

n RDVRECONNECT—This is not currently used in the reference implementa-
tion. It indicates that the Rendezvous service has received a response
from a rendezvous peer confirming the success of a Connect request. In
this case, the client peer was already connected to the rendezvous peer,
but it sent a Connect to renew its lease with the rendezvous peer. Most
likely, this will be used when the lease time is used correctly.

n RDVFAILED—This is not currently used in the reference implementation.
The Rendezvous service has received a response indicating that its
Connect request failed.

Implementations of RendezvousListener can be added to and removed from
the RendezVousService instance using the addListener and removeListener
methods.The methods operate in a similar fashion to DiscoveryService’s
addDiscoveryListener and removeDiscoveryListener methods.

08_2344 Ch 06 5/14/02 11:38 AM Page 173

174 Chapter 6 The Rendezvous Protocol

Support Classes Used by the Rendezvous Service
The RendezVousService relies on several other interfaces to abstract the task of
managing peers’ requests to obtain or cancel a connection lease. Each
RendezVousService instance relies on an implementation of the RendezVousManager
interface, as shown in Figure 6.5, to handle a client peer’s request for a con-
nection lease.

<<Interface>>

RendezVousManager

(from net.jxta.rendezvous)

requestConnection(adv : net.jxta.document.Advertisement) : long

Figure 6.5 The RendezVousManager interface.

The requestConnection method processes the Peer Advertisement passed in the
request and returns the lease time (in milliseconds). In the current reference
implementation, the default lease time is 30 minutes, although this time is not
currently used, as previously mentioned.A lease time of 0 indicates that the
RendezVousService instance should not add the client to its set of connected
client peers.A negative lease time indicates an infinite lease on the connection
to the rendezvous peer.

Unlike the RendezvousListener interface, a RendezVousService instance has
only one RendezVousManager instance.The RendezVousManager instance is
initialized only when the RendezVousService is configured to act as a
rendezvous for other peers.This RendezVousManager instance is passed to the
RendezVousService.startRendezVous method used to start the Rendezvous
service operating as rendezvous peer.

After the rendezvous peer is started using startRendezVous, the
RendezVousManager instance can’t be changed. Instead, the RendezVousService
instance must be stopped using stopRendezVous and restarted using a different
RendezVousManager instance. Stopping and starting the RendezVousService instance
affects only the instance’s operation as a rendezvous peer.The portion of
RendezVousService instance responsible for allowing the local peer to propagate
messages using other rendezvous peers is unaffected by startRendezVous and
stopRendezVous.

Another support interface, RdvMonitor, provides functionality that is used
when the Rendezvous service is acting as a client to a remote rendezvous
peer. RdvMonitor’s methods, shown in Figure 6.6, are invoked when a client
peer successfully obtains or cancels a connection lease with a rendezvous peer.
A RendezVousService instance has only a single RdvMonitor instance.

08_2344 Ch 06 5/14/02 11:38 AM Page 174

175The Rendezvous Service

Figure 6.6 The RendezVousMonitor interface.

When a peer receives a response indicating that a rendezvous peer has granted
a connection lease, the RdvMonitor.connected method is invoked by the
RendezVousService instance.The connected method accepts the rendezvous peer’s
Peer ID and the lease time for the connection. In the reference implementa-
tion, the connected method adds a local Rendezvous Advertisement for the
remote peer and starts a thread to handle renewing the lease.

When a peer cancels a connection lease with a rendezvous peer, the
RendezVousService instance invokes the disconnected method. Currently, the ref-
erence implementation of RdvMonitor doesn’t do anything in the disconnected
method.

The RdvMonitor interface defines one other method, discovered, which is
invoked by the RendezVousService instance to provide an advertisement for
other rendezvous peers.When the RendezVousService’s sendRendezVousAdv method
is called, the peer sends a message containing a message element named
jxta:RdvAdv that contains a Peer Advertisement.This Peer Advertisement is for
a rendezvous peer that the RendezVousService instance wants to publish to other
peers.When a peer’s RendezvousService receives a message containing a
jxta:RdvAdv message element, the service’s RdvMonitor instance has its discovered
method invoked.This feature can be used to distribute the load away from a
particular rendezvous peer. Currently, the reference implementation simply
publishes the advertisement locally when discovered is called.

Unlike RendezVousManager, the RdvMonitor instance can be set using the
RendezVousService.setMonitor method.

Other Useful RendezVousService Methods
The RendezVousService interface defines several other useful methods:

n getConnectedPeers—Returns an Enumeration of IDs of all the client peers
currently connected to the rendezvous peer.When a peer is not acting as
a rendezvous peer, the Enumeration is empty.

n getConnectedRendezVous—Returns an Enumeration of IDs of all the ren-
dezvous peers to which the peer is connected.This method returns
results regardless of whether the peer is operating as a rendezvous peer.

<<Interface>>

RendezVousMoniter

(from net.jxta.rendezvous)

discovered(adv : net.jxta.document.Advertisement) : void

connected(peerId : net.jxta.peer.PeerID, lease : long) : void

disconnected(peerId : net.jxta.peer.PeerID) : void

08_2344 Ch 06 5/14/02 11:38 AM Page 175

176 Chapter 6 The Rendezvous Protocol

n getDisconnectedRendezVous—Returns an Enumeration of IDs of all rendez-
vous peers to which the peer has failed to connect.

n isConnectedToRendezVous—Returns true if the peer is currently connected
to at least one rendezvous peer.

n isRendezVous—Returns true if the peer is providing rendezvous peer ser-
vices to other client peers in Rendezvous service’s peer group.

Maintaining Rendezvous Connections
To ensure that a peer receives propagated messages, the peer must maintain its
connection lease to a number of rendezvous peers.Without maintaining and
renewing the connection lease, a peer risks not receiving propagated messages
from members of its peer group that are not part of its local LAN segment.

To address this issue, the reference implementation provides the
RendAddrCompactor class in net.jxta.impl.rendezvous.The RendAddrCompactor class
runs a thread that regularly uses the Discovery service to find Rendezvous
Advertisements and maintain connections to rendezvous peers.The
RendAddrCompactor thread tries to discover and obtain a connection lease with
up to three rendezvous peers, thereby attempting to guarantee connectivity
with peer group members outside the local LAN segment.

Summary
In this chapter, you saw how the Rendezvous service allows peers to propagate
messages to other peers within a peer group.You also learned that the
Rendezvous service provides the capability for a peer to act as a rendezvous
peer and propagate messages on behalf of other peers in a peer group.
Developers can use the Rendezvous service not only to send messages, but
also to provide their own custom functionality when client peers connect to
the Rendezvous service to obtain rendezvous peer services.

In the next chapter, you explore the Peer Information Protocol, which is a
protocol that monitors peers and obtains peer status information.The Peer
Information Protocol allows a peer to gather information about a remote peer
that it can use to determine the suitability of the peer for performing a task.

08_2344 Ch 06 5/14/02 11:38 AM Page 176

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Information Protocol

7

THE PEER INFORMATION PROTOCOL (PIP) allows peers to obtain status informa-
tion from previously discovered peers.This status information is currently
limited to include only data on the uptime of the peers and the amount of
traffic processed by the peer. Future work on the PIP will most likely extend
this basic protocol to provide ways for developers to extend the protocol’s
default status-monitoring capabilities.

Introducing the Peer Information Protocol
After a remote peer has been discovered using the Discovery service and the
Peer Discovery Protocol, a peer might want to monitor the remote peer’s
status to make additional decisions about how to use the remote peer most
effectively or to make the use of its services by other peers more efficient.
Monitoring is an essential part of a P2P network, providing information that
peers can use to leverage the resources of the P2P network in the most effi-
cient manner. For example, in a file-sharing P2P application, a peer could use
status information describing the current network traffic on a remote peer to
decide whether to use the remote peer as a source of services. If the remote
peer is under an extreme load, it’s in the interests of both the client peer and
the P2P network in general to shift usage away from that remote peer.

09_2344 Ch 07 5/14/02 11:39 AM Page 177

178 Chapter 7 The Peer Information Protocol

The Peer Information Protocol (PIP) is an optional JXTA protocol that
allows a peer to monitor a remote peer and obtain information on the remote
peer’s current status.As with all the protocols described up to this point in the
book, the PIP requires only two types of messages:

n Peer Info Query Message—A message format for querying a remote
peer’s status

n Peer Info Response Message—A message format for providing a
peer’s status to other peers

These two messages are responsible for providing access to a peer’s status
information using the protocol shown in Figure 7.1.

1. Peer 1 sends a Peer Info
Query Message to a specific
peer, Simple Peer 2.

Peer 1

Simple Peer 1

Simple Peer 2

2. The Peer Info service on a
simple peer receiving the
query searches and checks to
see if the query’s targetPid
matches the local peer ID. If
there is a match, the simple
peer responds to the source
peer with a Peer Info
Response Message.
Otherwise, the Peer Info
service does nothing.

Figure 7.1 Exchange of Peer Info messages.

Although Figure 7.1 shows that a peer that receives a Peer Info Query
Message not addressed to it does nothing with the message, the reference
implementation is slightly different.The reference implementation provides for
the possibility that a query message might be propagated to a peer instead of
sent to a specific peer. If a peer receives a query to which it isn’t the subject
of the query, the peer propagates the query to the peer group.

The Peer Info service implements the PIP by leveraging the Resolver and
Rendezvous services.This implementation follows a similar pattern to the
Discovery service.The Peer Info service uses Resolver Query and Response
Messages and the Resolver service to handle the details of sending a query to

09_2344 Ch 07 5/14/02 11:39 AM Page 178

179Introducing the Peer Information Protocol

a named handler and generating a response.The Resolver service is responsible
for handling the details of propagating messages to other simple peers and
rendezvous peers for the Resolver service.As with all the protocols in JXTA
that you’ve seen so far, a PIP query to a remote peer might not result in a
response.

The Peer Info Query Message
The Peer Info Query Message is very simple, if not a little limited, as shown in
Listing 7.1.

Listing 7.1 The Peer Info Query Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PeerInfoQueryMessage xmlns:jxta=”http://jxta.org”>

<sourcePid> . . . </sourcePid>

<targetPid> . . . </targetPid>

<request> . . . </request>

</jxta:PeerInfoQueryMessage>

The Peer Info Query Message specifies three parameters:
n sourcePid—A required element containing the ID of the peer requesting

status information from a remote peer.This Peer ID is a string encoding
of the JXTA URN for the peer that generated the query.

n targetPid—A required element containing the ID of the remote peer
from which status information is being solicited.This Peer ID is a string
encoding of the JXTA URN for the peer that is the target of the query.

n request—An optional element containing a string specifying the status
information being requested from the remote peer.The format of this
request string is unspecified; it is the responsibility of the recipient to
know how to decode it.

Unfortunately, the current reference implementation provides no mechanism
to allow a developer to handle requests specified by the contents of the request
element in the query. It appears that this is work that will be undertaken in
the future to allow developers to add their own code to unmarshall the con-
tents of the request element and provide response information to the peer
requesting status information.

Unlike other protocols that you’ve seen so far, each rendezvous peer that
propagates this message does not generate a response to the query.When the
Peer Info service receives a Peer Info Query Message, it checks to see if the

09_2344 Ch 07 5/14/02 11:39 AM Page 179

180 Chapter 7 The Peer Information Protocol

local peer’s ID matches the targetPid. If the IDs match, the service generates a
response that is sent by the Resolver service to the source peer. Otherwise, no
response is generated and the message is propagated to other peers that might
be capable of providing the response.Theoretically, it should be possible to
propagate a Peer Info Query Message in the reference implementation, but
functionality to handle this case has been added as a precaution.

The Peer Info Query Message is different from the other protocol imple-
mentations in another significant way:The abstract PeerInfoQueryMessage class in
net.jxta.protocol and the reference implementation PeerInfoQueryMsg in
net.jxta.impl.protocol aren’t used throughout by the reference implementation!
Although some areas of the reference implementation do use these objects,
their use is inconsistent.

This inconsistency suggests that the implementation of the PIP is in a much
earlier stage of development compared to some of the other protocols.The
lack of a mechanism to allow a developer to handle the contents of the request
element of the Peer Info Query Message further underlines the fact that the
PIP is still a work in progress.

The Peer Info Response Message
The counterpart to the Peer Info Query Message, the Peer Info Response
Message, is significantly more detailed, as shown in Listing 7.2.

Listing 7.2 The Peer Info Response Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PeerInfoResponse xmlns:jxta=”http://jxta.org”>

<sourcePid> . . . </sourcePid>

<targetPid> . . . </targetPid>

<uptime> . . . </uptime>

<timestamp> . . . </timestamp>

<response> . . . </response>

<traffic>

. . .

</traffic>

</jxta:PeerInfoResponse>

The Peer Info Response Message provides a variety of status information,
most of which is oriented to providing information on the network traffic
load on the remote peer:

09_2344 Ch 07 5/14/02 11:39 AM Page 180

181Introducing the Peer Information Protocol

n sourcePid—A required element containing the ID of the peer requesting
status information from the peer.This Peer ID is a string encoding of the
JXTA URN for the peer that generated the original Peer Info Query
Message.

n targetPid—A required element containing the ID of the remote peer
from which status information is being solicited.This Peer ID is a string
encoding of the JXTA URN for the peer providing the response to the
Peer Info Query Message.

n uptime—An optional element containing the amount of time, in millisec-
onds, since the peer joined the P2P network. In the reference implemen-
tation, the uptime corresponds to the amount of time that has elapsed
since the Peer Info service started.

n timestamp—An optional element containing a timestamp describing the
time when the peer generated the status information contained in the
response.This timestamp is given in milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT).

n response—An optional element containing a string specifying the status
information being returned in response to the query’s request element’s
content.The format of this response string is unspecified; it is the respon-
sibility of the recipient to know how to decode it.The reference PIP
implementation does not currently provide a mechanism to allow a
developer to populate the response element to provide the requested
information.

n traffic—An optional element that contains details on the network traffic
handled by the peer.The format of the contents of the traffic element is
shown in Listing 7.3.

Listing 7.3 The Format of the traffic Element Contents

<traffic>

<lastIncomingMessageAt> . . . </lastIncomingMessageAt>

<lastOutgoingMessageAt> . . . </lastOutgoingMessageAt>

<in>

<transport endptaddr=” . . . “> . . . </transport>

</in>

<out>

<transport endptaddr=” . . . “> . . . </transport>

</out>

</traffic>

09_2344 Ch 07 5/14/02 11:39 AM Page 181

182 Chapter 7 The Peer Information Protocol

The contents of the traffic element in the Peer Info Response Message
describe in detail the network traffic handled by the peer:

n lastIncomingMessageAt—An optional element containing a timestamp
specifying the last time that the peer’s endpoints handled an incoming
message.The timestamp is given in milliseconds since the epoch.

n lastOutgoingMessageAt—An optional element containing a timestamp
specifying the last time that the peer’s endpoints handled an outgoing
message.The timestamp is given in milliseconds since the epoch.

n in—An optional element containing details on the inbound traffic seen
by the peer’s endpoints.The in element may contain zero or more
transport elements.

n transport—An optional element containing the number of bytes
processed by the endpoint address specified by the endptaddr attribute.
When used inside the in element, this element specifies the number of
bytes received by the endpoint address specified.When used inside the
out element, this element specifies the number of bytes sent by the end-
point address specified.The format of the endpoint address is covered in
Chapter 9,“The Endpoint Routing Protocol.”

n out—A container element to hold details on the outbound traffic seen
by the peer’s endpoints.The out element may contain zero or more
transport elements.

The reference implementation of the PIP has one oversight in its current
form: Peer Info Query Messages are propagated indiscriminately.When a peer
receives a Peer Info Query in which the targetPid matches its local Peer ID, it
generates a Peer Info Response Message that the Resolver service sends to the
peer that generated the query. Unfortunately, the Resolver service still propa-
gates the query, even though the target peer has responded.

Similar to the Peer Info Query Message, the reference implementation pro-
vides the PeerInfoResponseMessage abstract class in net.jxta.protocol and the
PeerInfoResponseMsg implementation class in net.jxta.impl.protocol.These classes
are shown in Figure 7.2.

Unlike the PeerInfoQueryMessage and PeerInfoQueryMessage classes, the
PeerInfoResponseMessage and PeerInfoResponseMsg classes are used throughout
the reference implementation to handle parsing and formatting Peer Info
Response Messages.

09_2344 Ch 07 5/14/02 11:39 AM Page 182

183The Peer Info Service

Figure 7.2 The Peer Info Response Message classes.

The Peer Info Service
As with the other protocols, the PIP is encapsulated as a service, as shown in
Figure 7.3, freeing the developer from dealing with the details of the Peer Info
Query and Response Messages.

PeerInfoResponseMessage
(from net.jxta.protocol)

PeerInfoResponseMessage()

getMessageType() : java.lang.String

getSourcePid() : net.jxta.id.ID

getSourcePid(peerld : net.jxta.id.ID) : void

getTargetPid() : net.jxta.id.ID

setTargetPid(peerld : net.jxta.id.ID) : void

getResponse() : net.jxta.document.Element

getResponse(response : net.jxta.document.Element) : void

getUptime() : long

setUptime(uptime : long) : void

getTimestamp() : long

setTimestamp(timestamp : long) : void

getLastIncomingMessageTime() : long

setLastIncomingMessageTime(time : long) : void

getLastOutgoingMessageTime() : long

setLastOutgoingMessageTime(time : long) : void

getIncomingTrafficChannels() : java.util.Enumeration

getIncomingTrafficOnChannel(channel : java.lang.String) : long

setIncomingTrafficElement(channel L lava.lang.String, bytes : long) : void

getOutgoingTrafficChannels() : java.util.Enumeration

getOutgoingTrafficOnChannel(channel : java.lang.String) : long

setOutgoingTrafficElement(channel : java.lang.String, bytes : long) : void

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

PeerInfoResponseMsg

(from net.jxta.impl.protocol)

PeerInfoResponseMsg(doc : net.jxta.document.Element)

PeerInfoResponseMsg(source : net.jxta.id.ID, target : net.jxta.id.ID, uptime : long, timestamp : long, itime : long, otime : long, itraffic: java.util.Hashtable.otraffic : java.util.Hashtable)

PeerInfoResponseMsg()

initialize(doc : net.jxta.document.Element) : void

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

<<Interface>>

PeerInfoService

(from net.jxta.peer)

addPeerInfoListener(listener : net.jxta.peer.PeerInfoListener) : void

flushAdvertisements(peerld : net.jxta.id.ID) : void

getLocalPeerInfo(peerld : net.jxta.id.ID) : java.util.Enumeration

getPeerInfoService() : net.jxta.protocol.PeerInfoResponseMessage

getRemotePeerInfo(peerld : net.jxta.id.ID) : int

getRemotePeerInfo(peerld : net.jxta.ikd.ID, listener : net.jxta.peer.PeerInfoListener) : void

removePeerInfoListener(listener : net.jxta.peer.PeerInfoListener) : boolean

PeerInfoServiceImpl

(from net.jxta.impl.peer)

Figure 7.3 The Peer Info service interface and implementation.

09_2344 Ch 07 5/14/02 11:39 AM Page 183

184 Chapter 7 The Peer Information Protocol

The definition of the PeerInfoService interface is very similar to the
DiscoveryService interface, providing methods to retrieve remote and local
peer status information. Like the Discovery service, the Peer Info service
provides a mechanism to register a listener that will be notified when the
Peer Info service receives a Peer Info Response Message.

The reference implementation of the Peer Info service is a QueryHandler
implementation, whose processQuery is responsible for generating a response,
if any. Unfortunately, there is no way for the processQuery implementation to
signal to the Resolver service that a response has been generated and that the
original query should not be propagated. If the processQuery implementation
threw a DiscardResponseException, the Resolver service wouldn’t propagate the
query. However, throwing this exception would prevent processQuery from
returning a response to be sent to the source of the original query.This
incapability to prevent propagation is responsible for the current reference
implementation’s undesirable propagation of Peer Info Query Messages.

The PeerInfoListener Interface
As shown in Figure 7.4, to receive notifications of incoming Peer Info
Response Messages, a developer can create and register an implementation
of the PeerInfoListener interface.

<<Interface>>

PeerInfoListener

(from net.jxta.peer)

peerInfoResponse(event : net.jxta.peer.PeerInfoEvent) : void

Figure 7.4 The PeerInfoListener interface.

Like DiscoveryListener, PeerInfoListener provides only one method that gets
invoked when the Peer Info service receives a Peer Info Response Message.
The peerInfoResponse method accepts a PeerInfoEvent object, shown in Figure
7.5, that can be used by a PeerInfoListener implementation to extract the Peer
Info Response Message.

PeerInfoEvent

(from net.jxta.peer)

PeerInfoEvent(source : java.lang.Object, response : net.jxta.protocol.PeerInfoResponseMessage, queryld : int)

getPPeerInfoResponseMessage() : net.jxta.protocol.PeerInfoResponseMessage

getQueryID() : int

Figure 7.5 The PeerInfoEvent class.

09_2344 Ch 07 5/14/02 11:39 AM Page 184

185The Peer Info Service

The PeerInfoEvent’s getPPeerInfoResponseMessage returns a
PeerInfoResponseMessage instance that contains the response received
from a remote peer to a Peer Info Query Message.

Using the Peer Info Service
To demonstrate the use of the Peer Info service, you’ll implement a simple
PeerInfoListener and use the peer group’s PeerInfoService instance to obtain a
remote peer’s status information.

By this point in the book, you’ve probably noticed a number of common
architectural patterns employed by the JXTA reference implementation.These
patterns include the use of listener objects to provide callback functionality, the
division of all implementations into an abstract class defining the Java imple-
mentation’s API, and a concrete class providing the reference implementation.
Because of the similarities between the Peer Info and Discovery services, this
example skims over some of the basic details that were explained in Chapter 4,
“The Peer Discovery Protocol.”

Implementing PeerInfoListener

Implementing the PeerInfoListener interface is very similar to implementing
the DiscoveryListener interface.A developer needs only to create a class that
implements the peerInfoResponse method, as shown in Listing 7.4, and register
an instance of the implementation with the Peer Info service.

Listing 7.4 Source Code for ExampleListener.java

package net.jxta.impl.shell.bin.example7_1;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.peer.PeerInfoEvent;

import net.jxta.peer.PeerInfoListener;

import net.jxta.protocol.PeerInfoResponseMessage;

/**

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 185

186 Chapter 7 The Peer Information Protocol

* A simple implementation of PeerInfoListener to print out details on

* the received Peer Info Response Messages.

*/

public class ExampleListener implements PeerInfoListener

{

/**

* A simple handler that prints out the details on the received

* peer status information.

*

* @param event the event detailing the received response.

*/

public void peerInfoResponse(PeerInfoEvent event)

{

// Extract the peer info response from the event.

PeerInfoResponseMessage response =

event.getPPeerInfoResponseMessage();

// Print out the peer info.

System.out.println(“Uptime: “ + response.getUptime());

System.out.println(“Timestamp: “ + response.getTimestamp());

System.out.println(“Target: “ + response.getTargetPid());

System.out.println(“Source: “ + response.getSourcePid());

System.out.println(“Last Incoming Message: “

+ response.getLastIncomingMessageTime());

System.out.println(“Last Outcoming Message: “

+ response.getLastOutgoingMessageTime());

// Print out the incoming channel statistics.

Enumeration incoming = response.getIncomingTrafficChannels();

if (incoming != null)

{

while (incoming.hasMoreElements())

{

String incomingchannel = (String) incoming.nextElement();

long incomingbytes =

response.getIncomingTrafficOnChannel(incomingchannel);

System.out.println(

incomingbytes + “ incoming bytes on channel “

+ incomingchannel);

}

Listing 7.4 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 186

187The Peer Info Service

}

// Print out the outgoing channel statistics.

Enumeration outgoing = response.getOutgoingTrafficChannels();

if (outgoing != null)

{

while (outgoing.hasMoreElements())

{

String outgoingchannel = (String) outgoing.nextElement();

long outgoingbytes =

response.getOutgoingTrafficOnChannel(outgoingchannel);

System.out.println(

outgoingbytes + “ incoming bytes on channel “

+ outgoingchannel);

}

}

System.out.println(“Done with status info...”);

}

}

Extracting the Peer Info Response Message is as simple as a call to
getPPeerInfoResponseMessage:

PeerInfoResponseMessage peerinfo =
event.getPPeerInfoResponseMessage();

The returned PeerInfoResponseMessage can then be used to obtain the timestamp,
uptime, and other Peer Info Response Message elements’ contents.

Registering a PeerInfoListener

Before a PeerInfoListener implementation will begin receiving notification
of incoming Peer Info Response Messages, the implementation must be regis-
tered with the Peer Info service for a specific peer group.A PeerInfoListener is
registered using the PeerInfoService interface addPeerInfoListener method:

public void addPeerInfoListener (PeerInfoListener listener)

Like the Discovery service, the reference implementation of the Peer Info ser-
vice is implemented as a Resolver handler.The PeerInfoServiceImpl implements
the QueryHandler interface and handles invoking the registered listeners’
peerInfoResponse method.

09_2344 Ch 07 5/14/02 11:39 AM Page 187

188 Chapter 7 The Peer Information Protocol

An alternative to registering a handler with the PeerInfoService is to pass a
PeerInfoListener instance when querying remote peers for status information.
The PeerInfoService.getRemotePeerInfo method accepts a PeerInfoListener
instance:

peerinfo.getRemotePeerInfo(peerIdObject, new ExampleListener());

If getRemotePeerInfo is called with a PeerInfoListener implementation, the given
listener object is invoked when replies for the query arrive. In the reference
implementation of PeerInfoService, PeerInfoServiceImpl, the listener is stored to
a Hashtable using a query ID as the key.The query ID is used in the creation
of the Resolver Query Message, and the response sent by a remote peer
should use the same query ID.When a Peer Info Response message arrives,
wrapped in a Resolver Response Message, the PeerInfoServiceImpl extracts the
query ID from the ResolverResponseMsg and uses it to find a listener in the
Hashtable with the matching query ID. If a listener is found, its peerInfoResponse
method is invoked.This is done in addition to invoking the peerInfoResponse
method of all the listeners registered using addPeerInfoListener.

As with the Discovery service, listeners can be removed from the
PeerInfoService instance. Removing a listener stops it from receiving notifica-
tion of new incoming Peer Info Response Messages.To remove a listener, a
reference to the listener object is required:

public boolean removePeerInfoListener (PeerInfoListener listener);

The removePeerInfoListener method returns true if the PeerInfoService has
successfully removed the listener. If the method returns false, it indicates
that the listener object could not be found in the service’s set of registered
listeners. Unfortunately, listeners that are added to the service by invoking
getRemotePeerInfo with a listener object cannot be removed using
removePeerInfoListener.

Finding Remote Peer Information

Using the ExampleListener shown in Listing 7.4, it’s simple to create a Shell
command to send a query to remote peers for peer status information, shown
in Listing 7.5.

Listing 7.5 Source Code for example7_1.java

package net.jxta.impl.shell.bin.example7_1;

import java.net.URL;

import net.jxta.id.IDFactory;

09_2344 Ch 07 5/14/02 11:39 AM Page 188

189The Peer Info Service

import net.jxta.peer.PeerID;

import net.jxta.peer.PeerInfoService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple Shell command to demonstrate the use of the Peer Info

* service and the PeerInfoListener interface to query remote peers for

* status info.

*/

public class example7_1 extends ShellApp

{

/**

* The ID of the peer from whom peer info is being solicited.

*/

private String peerid = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “p:”);

while ((option = parser.getNextOption()) != -1)

{

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 189

190 Chapter 7 The Peer Information Protocol

switch (option)

{

case ‘p’ :

{

// Set the ID of the peer used to retrieve peer info.

peerid = parser.getOptionArg();

break;

}

}

}

}

/**

* Sends a query to a remote peer.

*

* @param aPeerId the ID of the peer from whom to solicit status info.

* @param peerinfo the PeerInfoService to use to perform the query,

*/

private void sendRemoteRequest(String aPeerId, PeerInfoService peerinfo)

{

try

{

// Transform the Peer ID string into a Peer ID object.

PeerID peerIdObject = (PeerID) IDFactory.fromURL(

new URL((aPeerId)));

// Use the Peer Info service to query for the peer info.

peerinfo.getRemotePeerInfo(peerIdObject, new ExampleListener());

}

catch (Exception e)

{

System.out.println(“Error parsing Peer ID string: “ + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

Listing 7.5 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 190

191The Peer Info Service

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

String peerid = null;

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Peer Info service for the current peer group.

PeerInfoService peerinfo = currentGroup.getPeerInfoService();

// Default to getting the local peer’s status info.

peerid = currentGroup.getPeerID().toString();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Send a remote peer info request.

System.out.println(“Running example7_1...”);

sendRemoteRequest(peerid, peerinfo);

return result;

}

}

09_2344 Ch 07 5/14/02 11:39 AM Page 191

192 Chapter 7 The Peer Information Protocol

The example7_1 command sends a query to a remote peer using the
PeerInfoService’s getRemotePeerInfo method, passing an instance of the
ExampleListener class to handle the responses.

It’s important to note that getRemotePeerInfo requires a real Peer ID to be
passed to the method.Although the reference implementation allows null to
be passed to getRemotePeer, the targetPid element for the Peer Info Query
Message is empty.The reference implementation of Peer Info service that
receives the query checks the targetPid against the local Peer ID and, because
they don’t match, does nothing.As a result, a response is never generated in
response to the query.

By default, example7_1 uses the local Peer ID as the targetPid, resulting in the
status information for the local peer.To retrieve remote peer information, the
command must be invoked with a Peer ID, such as in this code:

JXTA>example7_1 -purn:jxta:uuid-59616261646162614A787461503250332A2C6697AF84
4127A89E8F30B01CA1C403

To use example7_1 to retrieve the peer information for a specific peer, you first
need the ID of the remote peer. Run the peers command and choose a peer
from which you want to solicit status information.View the peer’s advertise-
ment using cat:

JXTA>cat peer0

Find the PID element in the Peer Advertisement, and use that value to invoke
the example7_1 command with the –p option. Unfortunately, the Shell doesn’t
currently support paste operations on all platforms, so you can’t cut and paste
the PID value.

An easier way to invoke the command is by using a Shell script.A Shell
script is any plain text file that contains Shell commands.To run a Shell script,
do the following:

JXTA>Shell –ftest.txt

This example runs the script test.txt from the Shell’s current directory. In the
Shell, the current directory is the Shell subdirectory of the JXTA Demo install
directory.To run the example7_1 command from a script, follow these steps:

1. Create a text file in the Shell subdirectory of the JXTA Demo installa-
tion directory. For this example, call the file test.txt.

2. Use the right-click pop-up menu in the Shell to copy the PID from the
remote peer that you want to query.

3. Edit test.txt.

09_2344 Ch 07 5/14/02 11:39 AM Page 192

193The Peer Info Service

4. Add the text example7_1 –p to the text file, and then paste the PID
directly after the –p option.

5. Save the test.txt file.

6. From the Shell, run the script using this command:
JXTA>Shell –ftest.txt

This runs the example7_1 command and queries the peer specified by the PID
that you entered in the script.When the ExampleListener receives responses, the
peer information details are printed to the console (not the Shell console) and
resemble Listing 7.6.

Listing 7.6 Example Output from ExampleListener

Uptime: 7330

Timestamp: 1007439754658

Target: urn:jxta:uuid-59616261646162614A787461503250332A2C6697AF84

4127A89E8F30B01CA1C403

Source: urn:jxta:uuid-59616261646162614A78746150325033AEB5D26090CD4EC683

E18ABE877ABE2703

Last Incoming Message: 0

Last Outcoming Message: 0

Done with status info...

Note
As of build 49b of the Java reference implementation of the JXTA platform, the PeerInfoService
implementation is disabled. This is a result of ongoing work to resolve issues within the implemen-
tation. If the examples in this chapter do not produce any output, it is most likely due to this
ongoing development work. Consult the platform.jxta.org web site for more information on
the current status of the PIP implementation.

Finding Cached Peer Information

Just as the Discovery service enables you to query the local cache of advertise-
ments, the Peer Info service provides a mechanism for retrieving cached status
information.The example shown in Listing 7.7 provides a simple command
for retrieving the locally cached peer information using the Peer Info service.

09_2344 Ch 07 5/14/02 11:39 AM Page 193

194 Chapter 7 The Peer Information Protocol

Listing 7.7 Source Code for example7_2.java

package net.jxta.impl.shell.bin.example7_2;

import java.io.IOException;

import java.io.StringWriter;

import java.net.URL;

import java.util.Enumeration;

import net.jxta.document.Advertisement;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.id.IDFactory;

import net.jxta.peer.PeerID;

import net.jxta.peer.PeerInfoListener;

import net.jxta.peer.PeerInfoService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.PeerInfoResponseMessage;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple Shell command to demonstrate the use of the Peer Info

* service and the PeerInfoListener interface to retrieve locally cached

* status info.

*/

public class example7_2 extends ShellApp

{

/**

* The ID of the peer from which peer info is being solicited.

*/

private String peerid = null;

09_2344 Ch 07 5/14/02 11:39 AM Page 194

195The Peer Info Service

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “p:l”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘p’ :

{

// Set the ID of the peer used to retrieve peer info.

peerid = parser.getOptionArg();

break;

}

}

}

}

/**

* Retrieves peer information from the local cache.

*

* @param aPeerId the ID of the peer from which to solicit status info.

* @param peerinfo the PeerInfoService to use to perform the query,

*/

private void sendLocalRequest(String aPeerId, PeerInfoService peerinfo)

{

try

{

PeerID peerIdObject = (PeerID) IDFactory.fromURL(

new URL((aPeerId)));

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 195

196 Chapter 7 The Peer Information Protocol

Enumeration enum = peerinfo.getLocalPeerInfo(peerIdObject);

// Iterate through the response messages.

while (enum.hasMoreElements())

{

// Extract the peer info response from the event.

PeerInfoResponseMessage response =

(PeerInfoResponseMessage) enum.nextElement();

// Print out the peer info.

System.out.println(“Uptime: “ + response.getUptime());

System.out.println(“Timestamp: “ + response.getTimestamp());

System.out.println(“Target: “ + response.getTargetPid());

System.out.println(“Source: “ + response.getSourcePid());

System.out.println(“Last Incoming Message: “

+ response.getLastIncomingMessageTime());

System.out.println(“Last Outcoming Message: “

+ response.getLastOutgoingMessageTime());

// Print out the incoming channel statistics.

Enumeration incoming =

response.getIncomingTrafficChannels();

if (incoming != null)

{

while (incoming.hasMoreElements())

{

String incomingchannel =

(String) incoming.nextElement();

long incomingbytes =

response.getIncomingTrafficOnChannel(

incomingchannel);

System.out.println(incomingbytes

+ “ incoming bytes on channel “

+ incomingchannel);

}

}

// Print out the outgoing channel statistics.

Enumeration outgoing =

response.getOutgoingTrafficChannels();

Listing 7.7 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 196

197The Peer Info Service

if (outgoing != null)

{

while (outgoing.hasMoreElements())

{

String outgoingchannel =

(String) outgoing.nextElement();

long outgoingbytes =

response.getOutgoingTrafficOnChannel(

outgoingchannel);

System.out.println(outgoingbytes

+ “ incoming bytes on channel “

+ outgoingchannel);

}

}

System.out.println(“Done with status info...”);

}

}

catch (IOException e)

{

println(“Error retrieving local peer info responses!” + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

String peerid = null;

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 197

198 Chapter 7 The Peer Information Protocol

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the PeerInfo service for the current peer group.

PeerInfoService peerinfo = currentGroup.getPeerInfoService();

// Default to getting the local peer’s status info.

peerid = currentGroup.getPeerID().toString();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

peerid = null;

// Send a local peer info request.

System.out.println(“Running example7_2...”);

sendLocalRequest(peerid, peerinfo);

return result;

}

}

The getLocalPeerInfo method provided by the PeerInfoService interface allows
a developer to retrieve cached status information. Unlike getRemotePeerInfo, the
method returns an Enumeration of matching PeerInfoResponseMessages retrieved
from the cache. Because this is a local request, registered implementations of
PeerInfoListener are never invoked as a result of calling the getLocalPeerInfo
method.

Listing 7.7 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 198

199Summary

Unlike getRemotePeerInfo, getLocalPeerInfo can be passed a null Peer ID
String. Passing null to getLocalPeerInfo returns all the peer information in the
local cache.

To run the example, modify the test.txt script to use example7_2 instead of
example7_1.When run, the output produced by example7_2 should be roughly
the same as example7_1, with the distinction that the information is from the
cache.

Summary
In its current state, the PIP isn’t especially useful. However, work is under way
by the Project JXTA team to augment the PIP to provide a more generic
status-monitoring framework. It’s not clear what features will emerge from this
work. Currently, it appears that the PIP implementation will be augmented to
provide a way to handle the content of the request element sent in the Peer
Info Query Message to a remote peer and generate content for the response
element in the Peer Info Response Message returned by the remote peer.This
work will undoubtedly build on the existing classes, so it has been important
in this chapter to understand the current PIP, if only to prepare for the arrival
of these additional features.

Now that you’ve seen how the Peer Information Protocol allows a peer
to monitor a remote peer, the next chapter explores another mechanism used
to transport data between peers: pipes.The Pipe Binding Protocol described
in the next chapter is used to establish pipe connections between peers.After
a connection is established, pipes allow peers to send data across a virtual
connection, abstracting the network transport layer in a generic fashion.

09_2344 Ch 07 5/14/02 11:39 AM Page 199

09_2344 Ch 07 5/14/02 11:39 AM Page 200

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Pipe Binding Protocol

8

PIPES ARE CONSTRUCTS WITHIN JXTA THAT send data to or receive data from a
remote peer. Services typically use either a Resolver handler (refer to Chapter
5,“The Peer Resolver Protocol”) or a pipe to communicate with another
peer. Before a pipe can actually be used, it must be bound to a peer endpoint.
Binding a pipe to an endpoint allows the peers to create either an input pipe
for receiving data or an output pipe for sending data.The process of binding a
pipe to an endpoint is defined by the Pipe Binding Protocol (PBP).

This chapter explains the Pipe Binding Protocol that JXTA peers use to
bind a pipe to an endpoint.The PBP defines a set of messages that a peer can
use to query remote peers to find an appropriate endpoint for a given Pipe
Advertisement and respond to binding queries from other peers.After a pipe
has been bound to an endpoint, a peer can use it to send or receive messages.
Several examples in the section “The Pipe Service” demonstrate the use of
both input and output pipes to send and receive data, respectively.

10_2344 Ch 08 5/14/02 11:41 AM Page 201

202 Chapter 8 The Pipe Binding Protocol

Introducing the Pipe Binding Protocol
The endpoint is the bottom-most element in the network transport abstraction
defined by JXTA. Endpoints are encapsulations of the native network inter-
faces provided by a peer.These network interfaces typically provide access to
low-level transport protocols such as TCP or UDP, although some can provide
access to higher-level transport protocols such as HTTP. Endpoints are respon-
sible for producing, sending, receiving, and consuming messages sent across the
network. Other services in JXTA build on endpoints either directly or indi-
rectly to provide network connectivity.The Resolver service, for example,
builds directly on endpoints, whereas the Discovery service builds on end-
points indirectly via the Resolver service.

In addition to the Resolver service, JXTA offers another mechanism by
which services can access a network transport without interacting directly
with the endpoint abstraction: pipes. Pipes are an abstraction in JXTA that
describe a connection between a sending endpoint and one or more receiving
endpoints.A pipe is a convenience method layered on top of the endpoint
abstraction.Although pipes might appear to provide access to a network trans-
port, implementations of the endpoint abstraction are responsible for the actual
task of sending and receiving data over the network.

To provide an abstraction that can encompass the simplest networking tech-
nology, JXTA specifies pipes as unidirectional, meaning that data travels in only
one direction. Pipes are also asynchronous, meaning that data can be sent or
received at any time, a feature that allows peers to act independently of other
peers without any sort of state synchronization.The JXTA Protocols
Specification does specify that other types of pipes (bidirectional, synchronous,
or streaming) might exist in JXTA. However, only the unidirectional asynchro-
nous variety of pipe is required by the specification.

Pipes are described by a Pipe Advertisement using the XML shown in
Listing 8.1.

Listing 8.1 The Pipe Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PipeAdvertisement>

<Id> . . . </Id>

<Type> . . . </Type>

<Name> . . . </Name>

</jxta:PipeAdvertisement>

10_2344 Ch 08 5/14/02 11:41 AM Page 202

203Introducing the Pipe Binding Protocol

The elements of the Pipe Advertisement provide required information that a
peer can use to find and connect to a remote peer:

n Id—A required element containing an ID that uniquely identifies the
pipe.This Pipe ID uses the standard JXTA URN format, as described in
JXTA Protocols Specification.

n Type—A required element containing a description of the type of con-
nection possible using the pipe. Currently, the reference implementation
supports JxtaUnicast, JxtaUnicastSecure, and JxtaPropagate.The JxtaUnicast
type of pipe provides a basic connection between one sending endpoint
and one receiving endpoint.The JxtaUnicastSecure type of pipe provides
the same functionality as the JxtaUnicast type of pipe, except that the
connection is secured using the Transport Layer Security (TLS) protocol.
The JxtaPropagate type of pipe provides a broadcast connection between
many sending endpoints and multiple receiving endpoints.

n Name—An optional element containing a symbolic name for the pipe
that can be used to discover the Pipe Advertisement using the Discovery
service.

Notice that the Pipe Advertisement seems to be missing one important piece
of information: a Peer ID. Pipe Advertisements are defined without specifying
a specific peer to allow several peers to provide access to a service using the
same Pipe Advertisement.The omission of a Peer ID is the reason that pipes
must be resolved using the Pipe Binding Protocol.

When a peer wants to send data using a pipe, it needs to find a peer that
has already bound a pipe with the same Pipe ID to an endpoint and that is
listening for data.The PBP defines two messages to enable a peer to resolve
a pipe:

n The Pipe Binding Query Message—A message format for querying
a remote peer if it has bound a pipe with a matching Pipe ID.

n The Pipe Binding Answer Message—A message format for sending
responses to the query.

The message formats are all that a peer needs to resolve the ID of a peer that
has a bound pipe with a given Pipe ID.As shown in Figure 8.1, when a peer
wants to bind to a specific pipe, it sends a Pipe Binding Query Message to all
of its known peers and rendezvous peers. Peers respond with a Pipe Binding
Answer Message that details whether they have a matching bound pipe.

10_2344 Ch 08 5/14/02 11:41 AM Page 203

204 Chapter 8 The Pipe Binding Protocol

Figure 8.1 Exchange of Pipe Binding Messages.

Two important things should be noted from Figure 8.1. First, when Peer 1
creates an input pipe, nothing is sent to the network. Peer 1 simply begins lis-
tening on its local endpoints for incoming messages tagged with the Pipe ID
specified in the Pipe Advertisement. Second, the Pipe Advertisement doesn’t
necessarily need to be communicated over the network.Although a Pipe
Advertisement usually is discovered using the Discovery service, a Pipe
Advertisement could also be hard-coded into an application or exchanged
using the Resolver service.

After the receiving end of the pipe has been resolved to a particular end-
point on a remote peer, the peer can bind the other end of the pipe to its
local endpoint.This pipe on the local peer is called an output pipe because the
pipe has been bound to an endpoint for the purpose of sending output to the
remote peer.The bound pipe on the remote peer is called an input pipe
because the pipe has been bound to an endpoint for the purpose of accepting
input.After the sending peer binds an output pipe, it can send messages to the
remote peer.

Only the endpoint location of the pipe on a remote peer must be deter-
mined in the binding process to create an output pipe.When creating an input
pipe, no binding process is necessary because the local peer already knows that
it will be binding the Pipe Advertisement to its local endpoint for the purpose
of accepting data.

It is important to reiterate that neither the input pipes nor the output pipes
are actually responsible for sending or receiving data.The endpoints specified
by the bound pipe are the elements responsible for handling the actual
exchange of messages over the network.

JXTA P2P Network
1. Peer 1 creates an input pipe
from a Pipe Advertisement and
waits for messages to arrive.

2. Peer 2, wanting to send a
message to Peer 1 using the
same Pipe Advertisement,
needs to create an output pipe
for a Pipe Advertisement. To
do this, it sends a Pipe Binding
Query Message to all of its
known peers and rendezvous
peers.

3. Peer 1, receiving the
Pipe Binding Query
Message, checks its
cache of pipes to see if it
has a match. It does, so it
responds with a Pipe
Binding Answer Message
containing its Peer
Advertisement.

Peer 1 Peer 2
4. Peer 2 receives the
Pipe Binding Answer
Message and extracts the
endpoint information from
the Peer Adevertisement.
The endpoint information
is used to create an
output pipe. When this is
done, Peer 2 can send
mesages to Peer 1.

10_2344 Ch 08 5/14/02 11:41 AM Page 204

205Introducing the Pipe Binding Protocol

In the case of propagation pipes (when the Pipe Advertisement’s Type is set
to JxtaPropagate), the implementation relies on the multicast or broadcast capa-
bilities of the local endpoint. In this case, the PBP is not required because the
sending endpoint doesn’t need to find a listening endpoint before it can send
data to the network.

The Pipe Binding Query Message
The Pipe Binding Query Message is sent by a peer to resolve the ID of a peer
that has bound an input pipe with a specific Pipe ID. Listing 8.2 shows the
format of the Pipe Binding Query Message.

Listing 8.2 The Pipe Binding Query Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PipeResolver>

<MsgType>Query</MsgType>

<PipeId> . . . </PipeId>

<Type> . . . </Type>

<Cached> . . . </Cached>

<Peer> . . . </Peer>

</jxta:PipeResolver>

The information sent in the Pipe Binding Query Message describes the pipe
that the peer is seeking to resolve and tells whether to use cached information.

n MsgType—A required element containing a string that indicates the type
of Pipe Binding Message. For the Pipe Binding Query Message, this ele-
ment is hard-coded to Query.

n PipeId—A required element containing the ID of the pipe for which the
requesting peer is attempting to resolve a Peer ID.

n Type—A required element containing the type of pipe being resolved.
This corresponds to the Type field of the Pipe Advertisement, and it can
have a value of JxtaUnicast, JxtaUnicastSecure, or JxtaPropagate.

n Cached—An optional element that specifies whether the remote peer
being queried can use its local cache of resolved pipes to respond to the
query. If this parameter is missing, the peer receiving the query assumes
that it is allowed to use cached information.

n Peer—According to the specification, this optional element specifies the
Peer ID of the only peer that should respond to the query. However, the
current reference implementation does not send this parameter yet;
which peers receive the query is specified by the service interface rather
than the protocol.

10_2344 Ch 08 5/14/02 11:41 AM Page 205

206 Chapter 8 The Pipe Binding Protocol

The reference implementation doesn’t define any classes to encapsulate the
Pipe Binding Query Message.

The Pipe Binding Answer Message
A peer responds to a Pipe Binding Query Message using a Pipe Binding
Answer Message. Note that response might or might not be sent to a given
query. Responses received are useful only to update the local peer’s cached set
of resolved pipes.The Pipe Binding Answer Message comes in two forms: one
to indicate that a matching pipe was not found and another to indicate a
matching pipe was found. Listing 8.3 shows the format of the Pipe Binding
Answer Message.

Listing 8.3 The Pipe Binding Answer Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PipeResolver>

<MsgType>Answer</MsgType>

<PipeId> . . . </PipeId>

<Type> . . . </Type>

<Peer> . . . </Peer>

<Found>false</Found>

<PeerAdv> . . . </PeerAdv>

</jxta:PipeResolver>

The elements of the Pipe Binding Answer Message are nearly identical to
those of the Pipe Binding Query Message, with the following exceptions:

n MsgType—A required element containing a string that indicates the type
of Pipe Binding Message. For the Pipe Binding Response Message, this
element is hard-coded to Answer.

n Found—An optional element that indicates whether a matching Pipe ID
was found. If this element is missing, the reference implementation
assumes that a peer with a matching Pipe ID was found.

n PeerAdv—An optional element containing the Peer Advertisement of the
peer that has the matching Pipe ID. If no match was found, this element
does not appear in the Pipe Binding Answer Message.The endpoint
information required to contact a remote peer using a specific pipe is
included as part of the Peer Advertisement.

As with the Pipe Binding Query Message, the reference implementation
provides no classes to abstract the Pipe Binding Answer Message.

10_2344 Ch 08 5/14/02 11:41 AM Page 206

207The Pipe Service

The Pipe Service
As with every other protocol in JXTA, the Pipe Binding Protocol is provided
as a service. In the case of the PBP, the Pipe service is responsible for handling
the details of creating input or output pipe objects and binding those pipe
objects to endpoints.The Pipe service, as shown in Figure 8.2, is defined by
the PipeService interface in the net.jxta.pipe package, with a reference imple-
mentation defined by the PipeServiceImpl class in the net.jxta.impl.pipe

package.

 <<Interface>>
 PipeService
(from net.jxta.pipe)

UnicastType : java.lang.String
PropagateType : java.lang.String
UnicastSecureType : java.lang.String

createInputPipe(adv : net.jxta.protocol.PipeAdvertisement) : net.jxta.pipe.InputPipe
createInputPipe(adv : net.jxta.protocol.PipeAdvertisement, listener : net.jxta.pipe.PipeMsgListener) : net.jxta.pipe.InputPipe
createOutputPipe(adv : net.jxta.protocolPipeAdvertisement, timeout : long) : net.jxta.pipe.OutputPipe
createOutputPipe(adv : net.jxta.protocolPipeAdvertisement, listener : net.jxta.pipe.OutputPipeListener) : void
createOutputPipe(adv : net.jxta.protocol.PipeAdvertisement, peers : java.util.Enumeration, timeout : long) : net.jxta.pipe.OutputPipe
createMessage() : net.jxta.endpoint.Message
removeOutputPipeListener(pipeID : java.lang.String, listener : net.jxta.pipe.OutputPipeListener) : net.jxta.pipe.OutputPipeListener

 PipeServiceImpl
(from net.jxta.impl.pipe)

Figure 8.2 The Pipe Service interface and implementation.

One thing that should be noted about the reference implementation of the
PipeService interface is its reliance on another service to implement the Pipe
Binding Protocol.The PipeResolver service is a Resolver service handler that
provides a convenience mechanism for PipeServiceImpl, freeing it to focus on
matching resolved endpoints to pipe-implementation objects.

Pipe objects implement either the InputPipe or the OutputPipe interfaces
defined in the net.jxta.pipe package.The reference implementation provides
an implementation of these interfaces for each of the three types of pipe
(unicast, secure unicast, and propagate), as shown in Figure 8.3.

A developer never creates these InputPipe or OutputPipe implementations
directly. Instead, a developer obtains an InputPipe or OutputPipe instance using
PipeService’s createOutputPipe or createInputPipe methods, respectively.

10_2344 Ch 08 5/14/02 11:41 AM Page 207

208 Chapter 8 The Pipe Binding Protocol

Figure 8.3 The pipe interfaces and classes.

Using the Pipe Service to Send and Receive Messages
The examples in the following sections demonstrate how to use the Pipe ser-
vice and pipes to send and receive data.The example consists of three parts: an
advertisement generator, a client, and a server.

Starting and Stopping the JXTA Platform

Unlike previous examples in this book, the examples in this chapter do not
rely on the Shell to start the JXTA platform or provide the user interface.
These applications start and stop the JXTA platform themselves by creating a
Net Peer Group instance using this call:

PeerGroup peerGroup = PeerGroupFactory.newNetPeerGroup();

As you’ve seen in all the examples so far, all operations within JXTA are asso-
ciated with a peer group. In the examples in all the previous chapters, a
PeerGroup object obtained from the Shell environment was used to obtain an
instance of a core service, such as the Discovery service, for a peer group.

The Net Peer Group is a special peer group, one that is described in greater
detail in Chapter 10,“Peer Groups and Services.” For the moment, just think
of the Net Peer Group as a common peer group that peers belong to when
the platform is started.

Unfortunately, after the platform starts, there currently isn’t any nice way to
shut down the JXTA platform in a controlled way.The only way, as unpleasant
as it is, is to use this code:

System.exit(0);

The exit call takes an integer parameter, where 0 indicates no error occurred.
To stop the JXTA platform after an error has occurred, the exit method
should be called with a nonzero value, usually 1.

 <<Interface>>
 InputPipe
(from net.jxta.pipe)

 InputPipeImpl
(from net.jxta.impl.pipe)

waitForMessage() : net.jxta.endpoint.Message
poll(timeout : int) : net.jxta.endpoint.Message
close() : void

 SecureInputPipeImpl
(from net.jxta.impl.pipe)

 WireInputPipe
(from net.jxta.impl.pipe)

10_2344 Ch 08 5/14/02 11:41 AM Page 208

209The Pipe Service

Creating a Pipe Advertisement

Creating an input pipe or output pipe using the Pipe service requires a Pipe
Advertisement. So, as shown in Listing 8.4, the first step in creating any solu-
tion that involves pipes is to create a Pipe Advertisement that describes the
type of pipe, the Pipe ID, and an optional name for the pipe.

Listing 8.4 Source Code for PipeAdvPopulator.java

package com.newriders.jxta.chapter8;

import java.io.FileWriter;

import java.io.IOException;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredTextDocument;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.ID;

import net.jxta.id.IDFactory;

import net.jxta.impl.peergroup.StdPeerGroup;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**

* An example to create a set of common Pipe Advertisement to be used

* by the PipeServer example application.

*/

public class PipeAdvPopulator

{

/**

* The peerGroup for the application.

*/

private PeerGroup peerGroup = null;

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 209

210 Chapter 8 The Pipe Binding Protocol

/**

* Generates a Pipe Advertisement for the PipeClient/Server example.

*/

public void generatePipeAdv()

{

// Create a new Pipe Advertisement object instance.

PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

PipeAdvertisement.getAdvertisementType());

// Create a unicast Pipe Advertisement.

pipeAdv.setName(“Chapter 8 Example Unicast Pipe Advertisement”);

pipeAdv.setPipeID((ID) IDFactory.newPipeID(

peerGroup.getPeerGroupID()));

pipeAdv.setType(PipeService.UnicastType);

writePipeAdv(pipeAdv, “UnicastPipeAdv.xml”);

// Create a secure unicast Pipe Advertisement.

pipeAdv.setName(

“Chapter 8 Example Secure Unicast Pipe Advertisement”);

pipeAdv.setPipeID((ID) IDFactory.newPipeID(

peerGroup.getPeerGroupID()));

pipeAdv.setType(PipeService.UnicastSecureType);

writePipeAdv(pipeAdv, “SecureUnicastPipeAdv.xml”);

// Create a propagate Pipe Advertisement.

pipeAdv.setName(“Chapter 8 Example Propagate Pipe Advertisement”);

pipeAdv.setPipeID((ID) IDFactory.newPipeID(

peerGroup.getPeerGroupID()));

pipeAdv.setType(PipeService.PropagateType);

writePipeAdv(pipeAdv, “PropagatePipeAdv.xml”);

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

Listing 8.4 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 210

211The Pipe Service

peerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Runs the application: starts the JXTA platform, generates the Pipe

* Advertisements, and stops the JXTA platform.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

PipeAdvPopulator p = new PipeAdvPopulator();

try

{

// Initialize the JXTA platform.

p.initializeJXTA();

// Generate the Pipe Advertisements to be used by the examples.

p.generatePipeAdv();

// Stop the JXTA platform.

p.uninitializeJXTA();

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

}

/**

* Stops the JXTA platform.

*/

public void uninitializeJXTA()

{

// Currently, there isn’t any nice way to do this.

System.exit(0);

}

/**

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 211

212 Chapter 8 The Pipe Binding Protocol

* Writes the given Pipe Advertisement to a file

* with the specified name.

*

* @param pipeAdv the Pipe Advertisement to be written to file.

* @param fileName the name of the file to write.

*/

private void writePipeAdv(PipeAdvertisement pipeAdv, String fileName)

{

// Create an XML formatted version of the Pipe Advertisement.

try

{

FileWriter file = new FileWriter(fileName);

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

StructuredTextDocument document =

(StructuredTextDocument) pipeAdv.getDocument(mimeType);

// Output the XML for the advertisement to the file.

document.sendToWriter(file);

file.close();

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

The PipeAdvPopulator example creates a Pipe Advertisement for each possible
pipe type, to allow you to experiment with all the pipe types in the following
pipe examples. PipeAdvPopulator creates three files: UnicastPipeAdv.xml,
SecureUnicastPipeAdv.xml, and PropagatePipeAdv.xml.

To compile and run PipeAdvPopulator, create a new directory and copy into
it all the JAR files from the lib directory under the JXTA Demo install direc-
tory. Place PipeAdvPopulator.java in the same directory and compile it from the
command line using this code:

javac -d . -classpath .;beepcore.jar;cms.jar;cryptix32.jar;
cryptix-asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;
jxtashell.jar;log4j.jar;minimalBC.jar PipeAdvPopulator.java

Listing 8.4 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 212

213The Pipe Service

Run the example using this code:
java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;
cryptix-asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;
jxtashell.jar;log4j.jar;minimalBC.jar
com.newriders.jxta.chapter8.PipeAdvPopulator

Configure your peer as you did for the earlier Shell examples when prompted
by the configuration screens.When you finish the configuration, the JXTA
platform starts and PipeAdvPopulator creates the Pipe Advertisement files.

Creating an Input Pipe

An input pipe listens for messages being sent by other peers.The example in
Listing 8.5 creates an InputPipe instance using the Pipe service.

Listing 8.5 Source Code for PipeServer.java

package com.newriders.jxta.chapter8;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.awt.FlowLayout;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 213

214 Chapter 8 The Pipe Binding Protocol

import net.jxta.pipe.InputPipe;

import net.jxta.pipe.PipeMsgEvent;

import net.jxta.pipe.PipeMsgListener;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**

* A server application to accept incoming messages on a pipe and display

* them to the user.

*/

public class PipeServer implements PipeMsgListener

{

/**

* The frame for the user interface.

*/

private JFrame serverFrame = new JFrame(“PipeServer”);

/**

* A label used to display the received message in the GUI.

*/

private JLabel messageText =

new JLabel(“Waiting to receive a message...”);

/**

* The peerGroup for the application.

*/

private PeerGroup peerGroup = null;

/**

* Indicates whether the GUI has been initialized already.

*/

private boolean initialized = false;

/**

* The input pipe used to receive messages.

*/

private InputPipe inputPipe = null;

Listing 8.5 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 214

215The Pipe Service

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Load the Pipe Advertisement generated by PipeAdvPopulator.

* This method tries to create an output pipe that can be used

* to send messages.

*

* @param fileName the name of the file from which to load

* the Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement

* file can’t be found.

* @exception IOException if there is an error binding the pipe.

*/

public void loadPipeAdv(String fileName)

throws FileNotFoundException, IOException

{

FileInputStream file = new FileInputStream(fileName);

MimeMediaType asMimeType = new MimeMediaType(“text/xml”);

// Load the advertisement.

PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

asMimeType, file);

// Publish the discovery to allow peers to find and bind the pipe.

DiscoveryService discovery = peerGroup.getDiscoveryService();

discovery.publish(pipeAdv, DiscoveryService.ADV);

discovery.remotePublish(pipeAdv, DiscoveryService.ADV);

// Create an input pipe using the advertisement.

PipeService pipeService = peerGroup.getPipeService();

inputPipe = pipeService.createInputPipe(pipeAdv, this);

}

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 215

216 Chapter 8 The Pipe Binding Protocol

/**

* Runs the application: starts the JXTA platform, loads the

* Pipe Advertisement from file, and creates an input pipe to

* use to receive messages.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

PipeServer server = new PipeServer();

if (args.length == 1)

{

try

{

// Initialize the JXTA platform.

server.initializeJXTA();

// Load the Pipe Advertisement.

server.loadPipeAdv(args[0]);

// Show the user interface.

server.showGUI();

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

catch (FileNotFoundException e2)

{

System.out.println(“Unable to load Pipe Advertisement: “

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println(“Error loading Pipe Advertisement: “

+ e3);

System.exit(1);

Listing 8.5 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 216

217The Pipe Service

}

}

else

{

System.out.println(

“Specify the name of the input Pipe Advertisement file.”);

}

}

/**

* Handles an incoming message.

*

* @param event the incoming event containing the arriving message.

*/

public void pipeMsgEvent(PipeMsgEvent event)

{

// Extract the message.

Message message = event.getMessage();

// Set the user interface to display the message text.

messageText.setText(message.getString(“MessageText”));

}

/**

* Configures and displays a simple user interface to display messages

* received by the pipe. The GUI also allows the user to stop the

* server application.

*/

public void showGUI()

{

if (!initialized)

{

initialized = true;

JButton quitButton = new JButton(“Quit”);

// Populate the GUI frame.

Container pane = serverFrame.getContentPane();

pane.setLayout(new FlowLayout());

pane.add(messageText);

pane.add(quitButton);

quitButton.addActionListener(

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 217

218 Chapter 8 The Pipe Binding Protocol

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

serverFrame.hide();

// Stop the JXTA platform. Currently, there isn’t

// any nice way to do this.

System.exit(0);

}

}

);

// Pack and display the user interface.

serverFrame.pack();

serverFrame.show();

}

}

}

The PipeServer starts the JXTA platform, loads a Pipe Advertisement specified
at the command line, creates an input pipe from the advertisement, and waits
for messages to arrive that it can display in its user interface.

The PipeServer example creates an input pipe using this code:
inputPipe = pipeService.createInputPipe(pipeAdv, this);

As shown in Figure 8.4, this version of createInputPipe takes PipeMsgListener as
its second parameter.The PipeServer class itself implements the PipeMsgListener
interface to receive notification when new messages arrive through the newly
created InputPipe.

This is the only mechanism for an application to register a listener because
the InputPipe interface doesn’t define any methods to register or unregister a
listener object.The PipeServer example implements the PipeMsgListener’s
pipeMsgEvent method to extract the received Message and update the PipeServer
user interface.

Listing 8.5 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 218

219The Pipe Service

Figure 8.4 The PipeMsgListener interface and PipeMsgEvent class.

An application that doesn’t use a PipeMsgListener can still retrieve messages
received by InputPipe by using either the poll or waitForMessage methods
defined by InputPipe:

public Message poll(int timeout) throws InterruptedException;

public Message waitForMessage() throws InterruptedException;

The waitForMessage method blocks indefinitely until a message arrives, at
which point, it returns a Message object. Usually an application that wants to
use this method spawns its own subclass of Thread to handle calling
waitForMessage repeatedly and processing the Message objects as they arrive.

The poll method is similar to waitForMessage, except that a call to the poll
method blocks only for the length of time specified.The timeout argument
specifies the amount of time (in milliseconds) to wait for a Message to arrive
before returning. If no message is received, the poll method returns null.

By itself, the PipeServer example isn’t very useful.There’s no point waiting
for messages to arrive if no one’s sending messages! Before you can use
PipeServer, you need to create a client application that sends messages using
the same Pipe Advertisement.

Creating an Output Pipe

An output pipe sends messages to a remote peer.The example in Listing 8.6
creates an output pipe to send simple text messages to a peer running the
PipeServer example created in the previous section.

 <<Interface>>
 PipeMsgListener
 (from net.jxta.pipe)

pipeMsgEvent(event : net.jxta.pipe.PipeMsgEvent) : void

 PipeMsgEvent
 (from net.jxta.pipe)

PipeMsgEvent(source : java.lang.Object, message : net.jxta.endpoint.Message)
getMessage() : net.jxta. endpoint.Message

10_2344 Ch 08 5/14/02 11:41 AM Page 219

220 Chapter 8 The Pipe Binding Protocol

Listing 8.6 Source Code for PipeClient.java

package com.newriders.jxta.chapter8;

import java.awt.FlowLayout;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.URL;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JTextField;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.IDFactory;

import net.jxta.peer.PeerID;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.OutputPipe;

import net.jxta.pipe.OutputPipeEvent;

import net.jxta.pipe.OutputPipeListener;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

10_2344 Ch 08 5/14/02 11:41 AM Page 220

221The Pipe Service

/**

* A client application, which sends messages over a pipe to a remote peer.

*/

public class PipeClient implements OutputPipeListener

{

/**

* The peerGroup for the application.

*/

private PeerGroup peerGroup = null;

/**

* The pipe to use to send the message to the remote peer.

*/

private OutputPipe outputPipe = null;

/**

* The frame for the user interface.

*/

private JFrame clientFrame = new JFrame(“PipeClient”);

/**

* The text field in the user interface to accept the message

* text to be sent over the pipe.

*/

private JTextField messageText = new JTextField(20);

/**

* Indicates whether the pipe has been bound already.

*/

private boolean initialized = false;

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

}

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 221

222 Chapter 8 The Pipe Binding Protocol

/**

* Load the Pipe Advertisement generated by PipeAdvPopulator. This method

* tries to create an output pipe that can be used to send messages.

*

* @param fileName the name of the file from which to load

* the Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement file

* can’t be found.

* @exception IOException if there is an error binding the pipe.

*/

public void loadPipeAdv(String fileName)

throws FileNotFoundException, IOException

{

FileInputStream file = new FileInputStream(fileName);

MimeMediaType asMimeType = new MimeMediaType(“text/xml”);

// Load the advertisement.

PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

asMimeType, file);

// Create an output pipe using the advertisement. This version of

// createOutputPipe uses the PipeClient class as an

// OutputPipeListener object.

PipeService pipeService = peerGroup.getPipeService();

pipeService.createOutputPipe(pipeAdv, this);

}

/**

* Runs the application: starts the JXTA platform, loads the Pipe

* Advertisement from file, and attempts to resolve the pipe.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

PipeClient client = new PipeClient();

if (args.length == 1)

{

Listing 8.6 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 222

223The Pipe Service

try

{

// Initialize the JXTA platform.

client.initializeJXTA();

// Load the Pipe Advertisement.

client.loadPipeAdv(args[0]);

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

catch (FileNotFoundException e2)

{

System.out.println(“Unable to load Pipe Advertisement: “

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println(“Error loading or binding Pipe”

+ “ Advertisement: “ + e3);

System.exit(1);

}

}

else

{

System.out.println(“You must specify the name of the input”

+ “ Pipe Advertisement file.”);

}

}

/**

* The OutputPipeListener event that is triggered when an OutputPipe is

* resolved by the call to PipeService.createOutputPipe.

*

* @param event the event to use to extract the resolved output pipe.

*/

public void outputPipeEvent(OutputPipeEvent event)

{

// We care about only the first pipe we manage to resolve.

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 223

224 Chapter 8 The Pipe Binding Protocol

if (!initialized)

{

initialized = true;

// Get the bound pipe.

outputPipe = event.getOutputPipe();

// Show a small GUI to allow the user to send a message.

showGUI();

}

}

/**

* Sends a message string to the remote peer using the output pipe.

*

* @param messageString the message text to send to the remote peer.

*/

private void sendMessage(String messageString)

{

PipeService pipeService = peerGroup.getPipeService();

Message message = pipeService.createMessage();

// Configure the message object.

message.setString(“MessageText”, messageString);

if (null != outputPipe)

{

try

{

// Send the message.

outputPipe.send(message);

}

catch (IOException e)

{

// Show some warning dialog.

JOptionPane.showMessageDialog(null, e.toString(), “Error”,

JOptionPane.WARNING_MESSAGE);

}

}

else

{

Listing 8.6 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 224

225The Pipe Service

// Show some warning dialog.

JOptionPane.showMessageDialog(null, “Output pipe is null!”,

“Error”, JOptionPane.WARNING_MESSAGE);

}

}

/**

* Configures and displays a simple user interface to allow the user to

* send text messages. The GUI also allows the user to stop the client

* application.

*/

private void showGUI()

{

JButton sendButton = new JButton(“Send Message”);

JButton quitButton = new JButton(“Quit”);

// Populate the GUI frame.

Container pane = clientFrame.getContentPane();

pane.setLayout(new FlowLayout());

pane.add(messageText);

pane.add(sendButton);

pane.add(quitButton);

// Set up listeners for the buttons.

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e)

{

// Send the message.

sendMessage(messageText.getText());

// Clear the text.

messageText.setText(“”);

}

}

);

quitButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 225

226 Chapter 8 The Pipe Binding Protocol

// Stop the JXTA platform. Currently, there isn’t any

// nice way to do this.

System.exit(0);

}

}

);

// Pack and display the user interface.

clientFrame.pack();

clientFrame.show();

}

}

The PipeClient example mirrors the PipeServer example.The PipeClient exam-
ple starts the JXTA platform, loads a Pipe Advertisement specified at the com-
mand line, and creates an output pipe from the advertisement.After an output
pipe is successfully created, the example displays a user interface that the user
can use to input messages to be sent via the output pipe to a remote peer.

The PipeClient example creates an output pipe using this code:
pipeService.createOutputPipe(pipeAdv, this);

This version of createOutputPipe takes OutputPipeListener, shown in Figure 8.5,
as its second parameter.The PipeClient itself implements the OutputPipeListener
interface to receive notification when an output pipe has been successfully
created.

Listing 8.6 Continued

 <<Interface>>
 OutputPipeListener
 (from net.jxta.pipe)

outputPipeEvent(event : net.jxta.pipe.OutputPipeEvent) : void

 OutputPipeEvent
 (from net.jxta.pipe)

OutputPipeEvent(source : java.lang.Object, pipe : net.jxta.pipe.OutputPipe, pipeID : java.lang.String, queryID : int)
getOutputPipe() : net.jxta.pipe.OutputPipe
getPipeID() : java.lang.String
getQueryID() : int

Figure 8.5 The OutputPipeListener interface and OutputPipeEvent class.

10_2344 Ch 08 5/14/02 11:41 AM Page 226

227The Pipe Service

Unlike the PipeServer example, the PipeClient example doesn’t display its user
interface immediately. Instead, PipeClient’s implementation of OutputPipeListener’s
outputPipeEvent method displays the user interface when a pipe has been bound
to an endpoint successfully. Because an output pipe may be bound successfully
to several endpoints, outputPipeEvent does this only the first time it is called.Text
entered into the user interface is wrapped as a Message and sent over the resolved
OutputPipe using OutputPipe’s send method.

Using PipeServer and PipeClient
PipeServer and PipeClient each form one end of a complete communication
connection.The PipeServer class listens for data on an input pipe, and the
PipeClient class allows a user to send data using an output pipe.To prepare to
run these examples, follow these steps:

1. Place the source code in the same directory that you created for the
PipeAdvPopulator example.

2. Compile the source code by using the same command as before (replac-
ing PipeAdvPopulator.java with the appropriate source filename, of
course).

3. Create a copy of the entire directory.This is required so that you can run
two independent instances of the PipeServer and PipeClient applications.

Next, start the PipeServer example in the original directory using this code:
java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeServer
UnicastPipeAdv.xml

Here, the UnicastPipeAdv.xml parameter specifies that PipeServer should use the
UnicastPipeAdv.xml Pipe Advertisement file to create the input pipe.After the
input pipe is created, the PipeServer example displays the user interface in
Figure 8.6.

Figure 8.6 The PipeServer user interface.

10_2344 Ch 08 5/14/02 11:41 AM Page 227

228 Chapter 8 The Pipe Binding Protocol

Finally, start PipeClient in the copy of the original directory. For this to work,
you need to force the JXTA platform to show the configuration interface by
deleting the PlatformConfig file. Start PipeClient using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClient
UnicastPipeAdv.xml

When the configuration screen appears, choose a different TCP and HTTP
port in the TCP and HTTP Settings sections of the Advanced tab.After you
enter the configuration and started the platform, PipeClient attempts to bind
an output pipe.When the output pipe has been successfully bound, PipeClient
displays the user interface in Figure 8.7.

Figure 8.7 The PipeClient user interface.

You should now be able to enter message in PipeClient’s user interface and
send it by clicking Send Message.The message is sent using the output pipe,
and the PipeServer user interface displays the message.

Note that although this demonstration might make it appear as though the
communication between the client and the server is reliable, JXTA does not
guarantee message delivery. Even if the pipe is using an endpoint protocol
built on top of a reliable network transport, such as TCP, a message is not
guaranteed to be delivered.A message might be dropped en route by an over-
loaded intermediary peer or even by the destination peer itself.That said, reli-
able message delivery could be built on top of pipes fairly easily and will most
likely be included in JXTA in the future.

Using Secure Pipes
A JXTA application can easily switch to using secure pipes just by changing
the Pipe Advertisement used when creating the input and output pipes.To try
using PipeServer and PipeClient with secure pipes, start the application the
same way as in the previous section, but replace UnicastPipeAdv.xml in each
command with SecureUnicastPipeAdv.xml.

10_2344 Ch 08 5/14/02 11:41 AM Page 228

229The Pipe Service

Secure pipes use the Transport Security Layer protocol, a variant of SSL 3.0,
to secure the communication channel.When you configure the platform for
the first time, the platform generates a root certificate and private key that are
used to secure communications.The root certificate is saved in the Personal
Security Environment directory (pse) under the current directory when the
platform executes, and the private key is protected using the password entered
in the Security tab of the Configurator.The root certificate is also published
within the Peer Advertisement.

Using secure pipes with PipeServer and PipeClient should not seem any
different than using the nonsecure unicast pipes in the previous example.

Using Propagation Pipes
Propagation pipes are different than the other two types of pipes examined so
far in this chapter. Propagation pipes provide a peer with a convenient mecha-
nism to broadcast data to multiple peer endpoints.This might be useful in
some applications, such as a chat application, in which one peer produces data
for consumption by multiple remote peers.

In theory, you can use a propagation pipe by invoking PipeClient and
PipeServer using the PropagatePipeAdv.xml Pipe Advertisement instead of the
UnicastPipeAdv.xml. However, the current reference implementation of
PipeService does not allow you to call createOutputPipe and provide an
OutputPipeListener.This should be fixed shortly, but in case it isn’t, Listing 8.7
shows a modified version of PipeClient that fixes the problem.

Listing 8.7 Source Code for PropagatePipeClient.java

package com.newriders.jxta.chapter8;

import java.awt.FlowLayout;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.URL;

import javax.swing.JButton;

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 229

230 Chapter 8 The Pipe Binding Protocol

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JTextField;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.IDFactory;

import net.jxta.peer.PeerID;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.OutputPipe;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**

* A client application, which sends messages over a pipe to a remote peer.

* This version is slightly different, to allow for use of a propagation

* pipe.

*/

public class PropagatePipeClient

{

/**

* The peerGroup for the application.

*/

private PeerGroup peerGroup = null;

/**

* The pipe to use to send the message to the remote peer.

*/

private OutputPipe outputPipe = null;

Listing 8.7 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 230

231The Pipe Service

/**

* The frame for the user interface.

*/

private JFrame clientFrame = new JFrame(“PropagatePipeClient”);

/**

* The text field in the user interface to accept the message

* text to be sent over the pipe.

*/

private JTextField messageText = new JTextField(20);

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Load the Pipe Advertisement generated by PipeAdvPopulator. This

* method tries to create an output pipe that can be used to send messages.

*

* @param fileName the name of the file from which to load the

* Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement

* file can’t be found.

* @exception IOException if there is an error binding the pipe.

*/

public void loadPipeAdv(String fileName)

throws FileNotFoundException, IOException

{

FileInputStream file = new FileInputStream(fileName);

MimeMediaType asMimeType = new MimeMediaType(“text/xml”);

// Load the advertisement.

PipeAdvertisement pipeAdv =

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 231

232 Chapter 8 The Pipe Binding Protocol

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

asMimeType, file);

// Create an output pipe using the advertisement. This version of

// createOutputPipe uses the PipeClient class as an

// OutputPipeListener object.

PipeService pipeService = peerGroup.getPipeService();

outputPipe = pipeService.createOutputPipe(pipeAdv, 10000);

// Because we can’t use an OutputPipeListener when attempting to

// create an output propagation pipe, the GUI must be displayed

// immediately.

showGUI();

}

/**

* Runs the application: starts the JXTA platform, loads the Pipe

* Advertisement from file, and attempts to resolve the pipe.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

PropagatePipeClient client = new PropagatePipeClient();

if (args.length == 1)

{

try

{

// Initialize the JXTA platform.

client.initializeJXTA();

// Load the Pipe Advertisement.

client.loadPipeAdv(args[0]);

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

catch (FileNotFoundException e2)

Listing 8.7 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 232

233The Pipe Service

{

System.out.println(“Unable to load Pipe Advertisement: “

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println(“Error loading or binding Pipe”

+ “ Advertisement: “ + e3);

System.exit(1);

}

}

else

{

System.out.println(“You must specify the name of the input”

+ “ Pipe Advertisement file.”);

}

}

/**

* Sends a message string to the remote peer using the output pipe.

*

* @param messageString the message text to send to the remote peer.

*/

private void sendMessage(String messageString)

{

PipeService pipeService = peerGroup.getPipeService();

Message message = pipeService.createMessage();

// Configure the message object.

message.setString(“MessageText”, messageString);

if (null != outputPipe)

{

try

{

// Send the message.

outputPipe.send(message);

}

catch (IOException e)

{

// Show some warning dialog.

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 233

234 Chapter 8 The Pipe Binding Protocol

JOptionPane.showMessageDialog(null, e.toString(), “Error”,

JOptionPane.WARNING_MESSAGE);

}

}

else

{

// Show some warning dialog.

JOptionPane.showMessageDialog(null, “Output pipe is null!”,

“Error”, JOptionPane.WARNING_MESSAGE);

}

}

/**

* Configures and displays a simple user interface to allow the user to

* send text messages. The GUI also allows the user to stop the client

* application.

*/

private void showGUI()

{

JButton sendButton = new JButton(“Send Message”);

JButton quitButton = new JButton(“Quit”);

// Populate the GUI frame.

Container pane = clientFrame.getContentPane();

pane.setLayout(new FlowLayout());

pane.add(messageText);

pane.add(sendButton);

pane.add(quitButton);

// Set up listeners for the buttons.

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e)

{

// Send the message.

sendMessage(messageText.getText());

// Clear the text.

messageText.setText(“”);

}

}

Listing 8.7 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 234

235The Pipe Service

);

quitButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

// Stop the JXTA platform. Currently, there isn’t any

// nice way to do this.

System.exit(0);

}

}

);

// Pack and display the user interface.

clientFrame.pack();

clientFrame.show();

}

}

Instead of calling createOutputPipe in loadPipeAdv with an OutputPipeListener
object, this version calls createOutputPipe with a timeout value.The user inter-
face is shown in loadPipeAdv after the output pipe is bound rather than being
shown by the outputPipeEvent method.

To see the propagate pipe in action, create another copy of the directory
holding your source code and the JXTA JARs, and delete the PlatformConfig
file.This time, run two PipeServer instances from different directories, and run
a PropagatePipeClient instance from third directory. Remember to configure
the platform running in the newest directory (the one that you copied at the
beginning of this paragraph) to use another TCP and HTTP port as before.
When running these applications, also be sure to use the PropagatePipeAdv.xml
file as the source of the Pipe Advertisement.

When the PipeServer and PropagatePipeClient instances are running, you
should be able to send a message using PropagatePipeClient.When the message
is sent, it should be displayed by both PipeServer instances. By comparison, per-
forming the same exercise using the UnicastPipeAdv.xml Pipe Advertisement
would result in only one of the PipeServer instances receiving the message. In
this case, only the first pipe instance resolved by the Pipe service would receive
the message.

10_2344 Ch 08 5/14/02 11:41 AM Page 235

236 Chapter 8 The Pipe Binding Protocol

Bidirectional Pipes
The examples given so far in this chapter have demonstrated only unidirec-
tional communication.To achieve bidirectional communication, you need two
pipes: one to send data and one to receive data.

You can easily implement a bidirectional solution, but doing so requires you
to write the code to bind both the input and output pipes. Instead of writing
the code, you can use the BidirectionalPipeService class, shown in Figure 8.8,
from the net.jxta.impl.util package to handle the common tasks of initializing
pipes for two-way communications.

BidirectionalPipeService

(from net.jxta.impl.util)

BidirectionalPipeService(peerGroup : net.jxta.peergroup.PeerGroup)

bind(pipeName : java.lang.String) : net.jxta.impl.util.BidirectionalPipeService.AcceptPipe

connect(adv : net.jxta.protocol.PipeAdvertisement, timeout : int) : net.jxta.impl.util.Bidirection

AcceptPipe

(from net.jxta.impl.util.BidirectionalPipeService)

AcceptPipe(adv : net.jxta.protocol.PipeAdvertisement, acceptPipe : net.jxta.pipe.InputPipe)

accept(timeout : int) : net.jxta.impl.util.BidirectionalPipeService.Pipe

accept(timeout ; int, listener : net.jxta.impl.util.BidirectionalPipeService.MessageListener) : net.jxta.impl.util.BidirectionalPipeService.Pipe

close() : void

getAdvertisement() : net.jxta.protocol.PipeAdvertisement

Pipe

(from net.jxta.impl.util.BidirectionalPipeService)

Pipe(inputPipe : net.jxta.pipe.InputPipe, outputPipe :net.jxta.pipe.OutputPipe)

getInputPipe() : net.jxta.pipe.InputPipe

getOutputPipe() : net.jxta.pipe.OutputPipe

<<Interface>>

MessageListener

(from net.jxta.impl.util.BidirectionalPipeService)

messageReceived(msg : net.jxta.endpoint.Message, outputPipe : net.jxta.pipe.OutputPipe)

Figure 8.8 The BidirectionalPipeService class and supporting classes.

The BidirectionalPipeService class provided by the reference implementation
isn’t a real service. Unlike PipeService or any of the other core services,
BidirectionalPipeService is not constantly running on a peer waiting to handle
incoming messages. Instead, BidirectionalPipeService is simply a wrapper built
on top of the Pipe and Discovery services. BidirectionalPipeService’s construc-
tor takes a PeerGroup object as its sole argument, which it uses to extract the
peer group’s Discovery and Pipe service objects:

public BidirectionalPipeService (PeerGroup peerGroup);

As shown in Figure 8.9, BidirectionalPipeService provides only two other
methods: bind and connect.The bind method is used to create an instance of
AcceptPipe, an inner class defined by BidirectionalPipeService, which uses an
input pipe to listen for connections from other peers.The connect method is
used to connect to a remote peer that is already listening for connections.

BidirectionalPipeService and its support classes use a clever trick to require
you to work directly with only one Pipe Advertisement.

10_2344 Ch 08 5/14/02 11:41 AM Page 236

237The Pipe Service

Figure 8.9 Flow of BidirectionalPipeService messages.

When the connect method is called, the Pipe Advertisement passed to the
method binds an output pipe. If that output pipe is bound successfully, the con-
nect method creates and binds a new input pipe.The connect method sends
this new pipe’s advertisement to the remote peer using the newly bound out-
put pipe. On the remote peer, the AcceptPipe object listening for new connec-
tions receives the Pipe Advertisement and uses it to bind an output pipe.The
remote peer can now use this output pipe to send messages back to the origi-
nating peer.The remote peer creates one more Pipe Advertisement and binds
an input pipe using this advertisement.This advertisement is sent as an
acknowledgement, which means that the original pipe used to negotiate the
two-way communications channel is no longer used.The peer receiving the
acknowledgement advertisement uses it rather than the original pipe to send
messages to the remote peer.Voilá—two-way communication. Using
BidirectionalPipeService, you can combine the earlier examples in this chapter
to create the simple chat client in Listing 8.8.

Listing 8.8 Source Code for PipeClientServer.java

package com.newriders.jxta.chapter8;

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Container;

JXTA P2P Network

1. Peer 1 creates and

publishes a new Pipe

Advertisement. It then starts

listening for a message by

creating an input pipe using

the new advertisement.

2. Peer 2, wanting to establish two-way

communication with Peer 1, binds an output

pipe using the discovered Pipe Advertisement.

After the pipe has been bound, Peer 2 creates

a new Pipe Advertisement and creates an input

pipe using the new advertisement. It now sends

the new Pipe Advertisement to Peer 1 using

the output pipe.

3. Peer 1 receives a message

from Peer 2 containing a Pipe

Advertisement. Peer 1 binds

an output pipe using the new

advertisement. Peer 1 then

creates a new Pipe Advertisement,

binds an input pipe using the

advertisement, and sends the

advertisement as an

acknowledgment to Peer 2.

The original pipe used to listen

for connections is closed. Peer 1

will listen for incoming messages

on the new pipe it created in this

step.

4. Peer 2 receives the

acknowledgment from

Peer 1 and extracts the

acknowledgment Pipe

Advertisement. Peer 2

binds an output pipe using

the new advertisement.

Both parties can now

begin exchanging

messages.

Peer 1 Peer 2

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 237

238 Chapter 8 The Pipe Binding Protocol

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.FileWriter;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.URL;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JTextField;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredTextDocument;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.util.BidirectionalPipeService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.InputPipe;

import net.jxta.pipe.OutputPipe;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**

* A simple text messaging application, which uses a bidirectional

* pipe to send and receive messages.

*/

Listing 8.8 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 238

239The Pipe Service

public class PipeClientServer

implements BidirectionalPipeService.MessageListener

{

/**

* The peerGroup for the application.

*/

private PeerGroup peerGroup = null;

/**

* The frame for the user interface.

*/

private JFrame clientFrame = new JFrame(“PipeClientServer”);

/**

* The text field in the user interface to accept the message

* text to be sent over the pipe.

*/

private JTextField messageText = new JTextField(20);

/**

* A label used to display the received message in the GUI.

*/

private JLabel receivedText = new JLabel(

“Waiting to receive a message...”);

/**

* Indicates whether the pipe has been bound already.

*/

private boolean initialized = false;

/**

* The bidirectional pipe object to use to send and receive messages.

*/

private BidirectionalPipeService.Pipe pipe = null;

/**

* Creates an input pipe and its advertisement using the

* BidirectionalPipeService. This is used when starting this class up

* in “server” mode. The advertisement is saved to file so that another

* instance of this class can use the advertisement to start up in

* “client” mode.

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 239

240 Chapter 8 The Pipe Binding Protocol

*/

public void createPipeAdv() throws IOException

{

BidirectionalPipeService pipeService = new

BidirectionalPipeService(peerGroup);

// Create an accept pipe to use to create an input pipe and

// listen for connections. “PipeClientServer” is simply the

// symbolic name that will appear in the Pipe Advertisement

// created by the BidirectionalPipeService.

BidirectionalPipeService.AcceptPipe acceptPipe =

pipeService.bind(“PipeClientServer”);

// Extract the Pipe Advertisement and write it to file.

PipeAdvertisement pipeAdv = acceptPipe.getAdvertisement();

try

{

FileWriter file = new FileWriter(“PipeClientServer.xml”);

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

StructuredTextDocument document =

(StructuredTextDocument) pipeAdv.getDocument(mimeType);

// Output the XML for the advertisement to the file.

document.sendToWriter(file);

file.close();

}

catch (Exception e)

{

e.printStackTrace();

}

// “Accept” a connection, meaning set up the input pipe and listen

// for messages. Set this object as the MessageListener so that

// we can handle incoming messages without having to spawn a

// thread to call waitForMessage on the input pipe.

while (null == pipe)

{

try

{

pipe = acceptPipe.accept(30000, this);

}

Listing 8.8 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 240

241The Pipe Service

catch (InterruptedException e)

{

System.out.println(“Error trying to accept(): “ + e);

}

}

// Show the user interface.

showGUI();

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Starts the class in “client” mode, loading a Pipe Advertisement from

* the given file. This advertisement is used to create an output pipe

* to talk to the remote peer and set up the bidirectional

* communications channel.

*

* @param fileName the name of the file from which to load the

* Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement

* file can’t be found.

* @exception IOException if there is an error binding the pipe.

*/

public void loadPipeAdv(String fileName)

throws FileNotFoundException, IOException

{

FileInputStream file = new FileInputStream(fileName);

MimeMediaType asMimeType = new MimeMediaType(“text/xml”);

// Load the advertisement.

PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 241

242 Chapter 8 The Pipe Binding Protocol

asMimeType, file);

// Connect using the Pipe Advertisement and the

// BidirectionalPipeService.

BidirectionalPipeService pipeService =

new BidirectionalPipeService(peerGroup);

while (null == pipe)

{

try

{

System.out.println(“Trying...”);

pipe = pipeService.connect(pipeAdv, 30000);

System.out.println(“Done Trying...”);

}

catch (IOException e)

{

// Do nothing.

}

}

// Show the user interface.

showGUI();

// There is no way to register a listener with the input pipe used

// by the Pipe object to receive message. So, use the

// waitForMessage method instead. Not the nicest way to do this,

// but it gives you the idea.

InputPipe input = pipe.getInputPipe();

while (true)

{

try

{

Message message = input.waitForMessage();

// Set the user interface to display the message text.

receivedText.setText(message.getString(“MessageText”));

}

catch (InterruptedException e)

Listing 8.8 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 242

243The Pipe Service

{

// Do nothing, ignore the interruption.

}

}

}

/**

* Runs the application. The application can run in either “server” or

* “client” mode. In “server” mode, the application creates a new Pipe

* Advertisement, writes it to a file, and binds an input pipe to start

* listening for incoming messages. In “client” mode, a Pipe

* Advertisement is read from a file and used to bind an output pipe to

* a remote peer.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

PipeClientServer client = new PipeClientServer();

if (args.length == 0)

{

// No arguments, therefore we must be trying to

// set up a new server. Create a input pipe and

// write its advertisement to a file.

try

{

// Initialize the JXTA platform.

client.initializeJXTA();

// Create the input connection and save the

// Pipe Advertisement.

client.createPipeAdv();

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

catch (FileNotFoundException e2)

{

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 243

244 Chapter 8 The Pipe Binding Protocol

System.out.println(“Unable to load Pipe Advertisement: “

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println(“Error loading or binding Pipe”

+ “ Advertisement: “ + e3);

System.exit(1);

}

}

else if (args.length == 1)

{

// If there’s one argument, then we need to try to

// connect to an existing server using the Pipe Advertisement

// in the file specified by the argument.

try

{

// Initialize the JXTA platform.

client.initializeJXTA();

// Load the Pipe Advertisement.

client.loadPipeAdv(args[0]);

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

catch (FileNotFoundException e2)

{

System.out.println(“Unable to load Pipe Advertisement: “

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println(“Error loading or binding Pipe”

+ “ Advertisement: “ + e3);

System.exit(1);

}

Listing 8.8 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 244

245The Pipe Service

}

else

{

System.out.println(“Usage:”);

System.out.println(“‘server’ mode: PipeClientServer”);

System.out.println(“‘client’ mode: PipeClientServer “

+ “<filename>”);

}

}

/**

* Handles displaying an incoming message to the user interface.

*

* @param message the message received by the input pipe.

* @param pipe an OutputPipe to use to send a response.

*/

public void messageReceived(Message message, OutputPipe pipe)

{

// Set the user interface to display the message text.

receivedText.setText(message.getString(“MessageText”));

}

/**

* Sends a message string to the remote peer using the output pipe.

*

* @param messageString the message text to send to the remote peer.

*/

private void sendMessage(String messageString)

{

PipeService pipeService = peerGroup.getPipeService();

OutputPipe outputPipe = null;

// Create and configure a message object.

Message message = pipeService.createMessage();

message.setString(“MessageText”, messageString);

// Get the output pipe from the pipe.

outputPipe = pipe.getOutputPipe();

if (null != outputPipe)

{

continues

10_2344 Ch 08 5/14/02 11:41 AM Page 245

246 Chapter 8 The Pipe Binding Protocol

try

{

// Send the message.

outputPipe.send(message);

}

catch (IOException e)

{

// Show some warning dialog.

JOptionPane.showMessageDialog(null, e.toString(), “Error”,

JOptionPane.WARNING_MESSAGE);

}

}

else

{

// Show some warning dialog.

JOptionPane.showMessageDialog(null, “Output pipe is null!”,

“Error”, JOptionPane.WARNING_MESSAGE);

}

}

/**

* Configures and displays a simple user interface to allow the user to

* send text messages. The GUI also allows the user to stop the client

* application.

*/

private void showGUI()

{

JButton sendButton = new JButton(“Send Message”);

JButton quitButton = new JButton(“Quit”);

JPanel receivePane = new JPanel();

receivePane.setLayout(new FlowLayout());

receivePane.add(receivedText);

JPanel sendPane = new JPanel();

sendPane.setLayout(new FlowLayout());

sendPane.add(messageText);

sendPane.add(sendButton);

sendPane.add(quitButton);

Listing 8.8 Continued

10_2344 Ch 08 5/14/02 11:41 AM Page 246

247The Pipe Service

// Populate the GUI frame.

Container pane = clientFrame.getContentPane();

pane.setLayout(new BorderLayout());

pane.add(receivePane, BorderLayout.NORTH);

pane.add(sendPane, BorderLayout.SOUTH);

// Set up listeners for the buttons.

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e)

{

// Send the message.

sendMessage(messageText.getText());

// Clear the text.

messageText.setText(“”);

}

}

);

quitButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

// Stop the JXTA platform. Currently, there isn’t any

// nice way to do this.

System.exit(0);

}

}

);

// Pack and display the user interface.

clientFrame.pack();

clientFrame.show();

}

}

10_2344 Ch 08 5/14/02 11:41 AM Page 247

248 Chapter 8 The Pipe Binding Protocol

The PipeClientServer example has two modes of operation:
n Server mode—This mode is used when you want to start a new

bidirectional pipe. It causes a new Pipe Advertisement to be written to
the file PipeClientServer.xml.This advertisement is used by any peer
that wants to send messages to the peer and initiate a bidirectional
connection.

n Client mode—This mode is used when you want to connect to an
existing bidirectional pipe.To connect, you need to provide a Pipe
Advertisement as part of the command-line arguments. In this example,
the advertisement that must be provided is the PipeClientServer.xml file
written by another instance of PipeClientServer, running in server mode.

To see this example in operation, you need to use two separate instances of
PipeClientServer.This requires two separate directories containing the com-
piled source code and JXTA JARs.As in previous examples, you need to con-
figure the JXTA platform for each directory to use different TCP and HTTP
ports.

After you create and configure the two directories, run one instance of
PipeClientServer in server mode from one directory using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClientServer

After the bidirectional pipe has successfully created and published a Pipe
Advertisement, you should see a message on the console similar to this:

Published bidir pipe urn:jxta:uuid-59616261646162614E50472050325033D7F4C6E7
B2BD4572B6628F1DFEE6B34404

This indicates that the bidirectional pipe has created an input pipe and pub-
lished the pipe’s advertisement.The PipeClientServer extracts this advertisement
and writes it to the file PipeClientServer.xml.

Now that an input pipe has been started, you need to start a second
instance of PipeClientServer, this time in client mode.To do this, you need to
provide a Pipe Advertisement. Copy the PipeClientServer.xml file from the first
PipeClientServer instance’s directory to the directory where the second
instance of PipeClientServer will be started. Start the second instance of
PipeClientServer from this directory using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClientServer
PipeClientServer.xml

10_2344 Ch 08 5/14/02 11:41 AM Page 248

249Summary

The second instance loads the Pipe Advertisement from PipeClientServer.xml
and attempts to bind an output pipe.After this has been done, both instances
of PipeClientServer should display their user interfaces, as shown in
Figure 8.10.

Figure 8.10 The PipeClientServer user interface.

You should now be able to send messages between the two PipeClientServer
instances. Note that if you stop both instances and start them again, you need
to recopy the PipeClientServer.xml file created by the server mode instance.
The bidirectional pipe creates a new Pipe Advertisement each time.

Summary
In this chapter, you learned how a pipe can be bound to an endpoint to send
data to or receive data from a remote peer.To demonstrate the use of the Pipe
service, this chapter used a set of Pipe Advertisement files generated by the
PipeAdvPopulator class.Although these files simplified the examples, it should be
realized that in real applications, Pipe Advertisements usually are obtained
using the Discovery service.

This chapter also examined the BidirectionalPipeService, a pseudo-service
built on top of the Pipe service.The BidirectionalPipeService provides a simple
mechanism for peers to establish two-way communications using two pipes.
The advantage of this mechanism is that only one Pipe Advertisement must be
published or discovered because the BidirectionalPipeService handles negotia-
tion of a second Pipe Advertisement.This mechanism also has the advantage
that it eliminates some of the code required to manage two pipes.

Pipe Advertisements aren’t usually published by themselves, but they are
usually contained within another advertisement.As you’ll see in Chapter 10,
“Peer Groups and Services,” a Pipe Advertisement is usually associated with a
service, allowing a remote peer to interact with a service through the pipe.

10_2344 Ch 08 5/14/02 11:41 AM Page 249

10_2344 Ch 08 5/14/02 11:41 AM Page 250

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Endpoint Routing Protocol

9

DUE TO THE AD HOC NATURE OF a P2P network, a message between two end-
points might need to travel through intermediaries.An intermediary might be
used to allowing peers with incompatible network transports to communicate
by using the intermediary as a gateway.To determine how a message should be
sent between two endpoints, a mechanism is required to allow a peer to dis-
cover route information.The Endpoint Routing Protocol (ERP) provides
peers with a mechanism for determining a route to an endpoint, allowing the
peer to send data to the remote endpoint.

Before learning about the Endpoint Routing Protocol, it is necessary to
understand how endpoints work. In Chapter 8,“The Pipe Binding Protocol,”
you learned that although pipes provide a transmission mechanism, the pipes
themselves are not responsible for the actual transmission and reception of
data. Pipes are an abstraction built on top of endpoints to provide a convenient
programming model. Endpoints are the entity responsible for conducting the
actual exchange of information over a network. Endpoints encapsulate a set of
network interfaces, allowing a peer to send and receive data independently of
the type of network transport being employed.

11_2344 Ch 09 5/14/02 11:43 AM Page 251

252 Chapter 9 The Endpoint Routing Protocol

Although JXTA provides the Resolver and Pipe services to enable high-
level use of endpoints, some services might want to use endpoints directly.This
chapter first explores the use of endpoints for conducting network communi-
cation and then details the Endpoint Routing Protocol and its relationship to
endpoints.

Introduction to Endpoints
JXTA offers two simple ways to send and receive messages: the Resolver
service and the Pipe service. However, as revealed in Chapter 5,“The Peer
Resolver Protocol,” and Chapter 8, these services are simply convenient
wrappers for sending and receiving messages using a peer’s local endpoints.
An endpoint is an interface to a set of network transports that allows data to
be sent across the network. In JXTA, network transports are assumed to be
unreliable, even though actual endpoint protocol implementations might
use reliable transports such as TCP/IP.

Unlike other areas of the JXTA platform, endpoint functionality doesn’t
have a protocol definition. Details on how data is to be formatted for transport
across the network is the responsibility of a particular endpoint protocol
implementation.The only functionality exposed to the developer is provided
by the Endpoint service, which aggregates the registered endpoint protocol
implementations for use by a developer.Although a developer could use the
Endpoint service implementation to obtain a particular endpoint protocol
implementation and use it directly, this is not desirable in most cases. Using a
particular endpoint protocol implementation directly makes a solution less
flexible by making the solution dependent on a particular network transport.

The Endpoint Service
The Endpoint service provides an access point to all the endpoint protocol
implementations installed on a peer, allowing a programmer to send a message
using these endpoint protocol implementations. Unlike the other core services
in JXTA, the Endpoint service is independent of a peer group.All peer groups
share the same Endpoint service, which makes sense, considering that the
Endpoint service provides the communication layer closest to the network
transport layer. By default, a peer group in the reference implementation
inherits the Endpoint service provided by its parent group. However, develop-
ers can provide a custom Endpoint service implementation for a peer group
that they create by loading a custom Endpoint service.This Endpoint service
implementation is loaded just like any other custom service, using the tech-
niques demonstrated in Chapter 10,“Peer Groups and Services.”

11_2344 Ch 09 5/14/02 11:43 AM Page 252

253Introduction to Endpoints

In the reference implementation, the Endpoint service, shown in Figure 9.1,
is defined by the EndpointService interface in the net.jxta.endpoint package and
is implemented by the EndpointServiceImpl class in the net.jxta.impl.endpoint
package.

<<Interface>>

EndpointService

(from net.jxta.endpoint)

EndpointServiceImpl

(from net.jxta.impl.endpoint)

getGroup() : net.jxta.peergroup.PeerGroup

getEndpointProtocols() : java.util.Enumeration

newMessage() : net.jxta.endpoint.Message

newEndpointAddress(uri : java.lang.String) : net.jxta.endpoint.EndpointAddress

getMessenger(addr : net.jxta.endpoint.EndpointAddress) : net.jxta.endpoint.EndpointMessenger

propagate(message : net.jxta.endpoint.Message. serviceName : java.lang.String, serviceParams : java.lang.String) : void

addListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

removeListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : boolean

addFilterListener(elementName : java.lang.String, listener : net.jxta.endpoint.EndpointFilterListener, incoming : boolean) : void

removeFilterListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointFilterListener, incoming : boolean) : void

demux(msg : net.jxta.endpoint.Message) : void

getEndpointProtocolByName(name: java.lang.String) : net.jxta.endpoint.EndpointProtocol

ping(addr : net.jxta.endpoint.EndpointAddress) : boolean

addEndpointProtocol(proto : net.jxta.endpoint.EndpointProtocol) : void

removeEndpointProtocol(proto : net.jxta.endpoint.EndpointProtocol) : void

Figure 9.1 The Endpoint service interface and implementation.

Although the endpoint protocol implementations define the format for data
crossing the network, the Endpoint service does add one piece of information
when propagating a message.The Endpoint service adds a message element
named jxta:EndpointHeaderSrcPeer to the outgoing messages. If visualized as
XML, remembering that messages aren’t necessarily rendered to XML, the
message element’s format would be as follows:

<jxta:EndpointHeaderSrcPeer>
. . .

</jxta:EndpointHeaderSrcPeer>

The jxta:EndpointHeaderSrcPeer element contains the ID of the peer propagat-
ing the message.This Peer ID is used by the Endpoint service that receives
the message to eliminate loopback by discarding messages whose source
Peer ID matches the local Peer ID.The remainder of the formatting of an
outgoing message is the responsibility of a particular endpoint protocol
implementation registered with an EndpointService instance using the
EndpointService.addEndpointProtocol method.

11_2344 Ch 09 5/14/02 11:43 AM Page 253

254 Chapter 9 The Endpoint Routing Protocol

As shown in Figure 9.2, an endpoint protocol implementation realizes the
EndpointProtocol interface from the net.jxta.endpoint package.

Figure 9.2 The EndpointProtocol interface and implementations.

An EndpointProtocol implementation allows a peer to propagate a message to as
many peers as possible. In a TCP endpoint protocol implementation, for
example,TCP multicast capabilities are used to send a message to as many
peers on the local LAN segment as possible.An EndpointProtocol implementa-
tion is also responsible for allowing a peer to send a message directly to a peer
located at a specific Endpoint Address.This functionality is provided by an
implementation of the EndpointMessenger interface obtained using the
EndpointProtocol implementation’s getMessenger method.The EndpointMessenger
interface, shown in Figure 9.3, is defined in net.jxta.endpoint.

 <<Interface>>
 EndpointProtocol
(from net.jxta.endpoint)

 BeepTransport
(from net.jxta.impl.endpoint.beep)

getMessenger(dest : net.jxta.endpoint.EndpointAddress) : net.jxta.endpoint.EndpointMessenger
propagate(message : net.jxta.endpoint.Message, serviceName : java.lang.String, serviceParams : java.lang.String, prunePeer : java.lang.String) : void
allowOverLoad() : java.lang.String
getProtocolName() : java.lang.String
getPublicAddress() : net.jxta.endpoint.EndpointAddress
isConnectionOriented() : boolean
allowRouting() : boolean
ping(addr : net.jxta.endpoint.EndpointAddress) : boolean

EndpointRouter
(from net.jxta.impl.endpoint)

 HttpTransport
(from net.jxta.impl.endpoint.http)

 ServletHttp Transport
(from net.jxta.impl.endpoint.servlethttp)

 TcpTransport
 (from net.jxta.impl.endpoint.tcp)

 TlsTransport
 (from net.jxta.impl.endpoint.tls)

Figure 9.3 The EndpointMessenger interface and implementations.

An implementation of EndpointMessenger is usually obtained using the
EndpointService.getMessenger method.The EndpointService.getMessenger method
takes a net.jxta.endpoint.EndpointAddress argument that identifies the remote
peer’s transport-specific location.This address is used to determine which

 <<Interface>>
 EndpointMessenger
(from net.jxta.endpoint)

 BeepNonBlockingMessenger
 (from net.jxta.impl.endpoint.beep)

EndpointRouter
(from net.jxta.impl.endpoint)

 HttpServerMessenger
 (from net.jxta.impl.endpoint.http)

 HttpNonBlockingMessenger
 (from net.jxta.impl.endpoint.http)

sendMessage(message : net.jxta.endpoint.Message) : void
close() : void

 HttpClientMessageSender
 (from net.jxta.impl.endpoint.servlethttp)

 TcpNonBlockingMessenger
 (from net.jxta.impl.endpoint.tcp)

 TlsMessenger
 (from net.jxta.impl.endpoint.tls)

 LoopbackMessenger
 (from net.jxta.impl.endpoint)

 RelayClilentMessageSender
 (from net.jxta.impl.relay)

11_2344 Ch 09 5/14/02 11:43 AM Page 254

255Introduction to Endpoints

EndpointProtocol provides connectivity to the remote peer, and it calls
getMessenger on the EndpointProtocol implementation.This encapsulation
and abstraction eliminate the need for a developer to ever instantiate an
EndpointMessenger implementation directly.

Types of Endpoint Transport Implementations
In the Java reference implementation, currently five endpoint protocol imple-
mentations are available:

n TCP (net.jxta.impl.endpoint.tcp)—This provides a TCP EndpointProtocol
implementation that uses a MulticastSocket to send data to peers on the
local LAN segment.A TCP-based EndpointMessenger implementation uses
a Socket to connect directly to a remote peer.

n HTTP (net.jxta.impl.endpoint.http)—This provides an HTTP
EndpointProtocol and EndpointMessenger.This endpoint protocol is slightly
different from a typical endpoint protocol implementation because the
HTTP endpoint protocol implementation provides the router peer
functionality that allows peers to perform firewall traversal.The
HTTP implementation of EndpointProtocol does not provide broadcast
capabilities.

n Servlet HTTP (net.jxta.impl.endpoint.servlethttp)—Similar to the
HTTP implementation, the Servlet HTTP implementation provides
HTTP transport functionality that can be plugged into application
servers that support the Java Servlet APIs.

n TLS (net.jxta.impl.endpoint.tls)—This is the Transport Layer Security
protocol endpoint protocol implementation.This endpoint protocol
implementation does not provide broadcast capabilities because the TLS
implementation is designed only for securing one-to-one communica-
tions.This implementation is built on top of libraries provided by the
Cryptix project (www.cryptix.org).

n BEEP (net.jxta.impl.endpoint.beep)—This is the Block Extensible
Exchange Protocol (IETF RFC 3080) implementation. BEEP is basically
a framework for building application protocols.This endpoint protocol
implementation does not provide broadcast capabilities.This implementa-
tion is built on top of libraries provided by beepcore.org.

One other implementation, the Endpoint Router implementation, provides a
transport that handles finding routes to remote peers via gateways.This trans-
port provides the implementation of the Endpoint Routing Protocol that will
be discussed later in this chapter.

11_2344 Ch 09 5/14/02 11:43 AM Page 255

256 Chapter 9 The Endpoint Routing Protocol

Each endpoint protocol implementation made available by a peer is identi-
fied by a Transport Advertisement in the peer’s Peer Advertisement. However,
the format of this Transport Advertisement varies by endpoint protocol imple-
mentation. Only the root element is common to all implementations:

<jxta:TransportAdvertisement>
. . .

</jxta:TransportAdvertisement>

By default, the endpoint protocol implementations are configured when the
JXTA platform boots.A default set of endpoint protocol implementations is
added to the Endpoint service based on the settings provided by the user to
the JXTA configuration tool. Currently, the default transports loaded include
TCP, HTTP, and TLS.

Endpoint Addresses
Endpoint Addresses provide the network transport-specific information
required to route a message over a particular endpoint protocol implementa-
tion to a specific peer and service. In general, the format of an Endpoint
Address in the reference implementation takes this form:

<protocol>://<network address>/<service name>/<service parameters>

The following definitions are used for each section of the Endpoint Address:
n <protocol>—The name of the network transport to use when sending the

message. Example values include tcp, http, and jxtatls.
n <protocolAddress>—The network transport-specific address used to locate

the destination peer on the network. For example, a TCP Endpoint
Address would use an IP address and port number for this value.

n <serviceName>—An identifier that uniquely specifies the destination ser-
vice on the remote peer.This effectively allows messages arriving over a
single network transport to be demultiplexed by the Endpoint service
and passed to the appropriate service.To associate a service with a partic-
ular peer group, the service name is usually a combination of a common
name for the service and the Peer Group ID.

n <serviceParameters>—Some unique identifying parameters being passed to
the service.These parameters might be used by a particular destination
service to provide information required to route the message to a partic-
ular handler instance before parsing the message itself.

For example, a message destined for the Pipe service on a remote peer using
the TCP endpoint protocol implementation would use an Endpoint Address
that looks like this:

tcp://10.6.18.38:80/PipeService/<Pipe ID>

11_2344 Ch 09 5/14/02 11:43 AM Page 256

257Introduction to Endpoints

In this example, Endpoint Address, 10.6.18.38:80 is the destination’s IP address
(10.6.18.38) and port number (80), PipeService is the name of the service, and
<Pipe ID> is the parameter to the Pipe service.

Only the protocol and the network address are required elements in the
Endpoint Address. If the Endpoint Address has no service specified, the form
of the address changes slightly to this:

<protocol>://<network address>/

Note that, in this case, no service parameters are specified because no service
has been specified.An address may also specify a service name but no service
parameters, in which case the form of the address is as follows:

<protocol>://<network address>/<service name>

The reference implementation defines the EndpointAddress interface in
net.jxta.endpoint and the Address implementation in net.jxta.impl.endpoint,
shown in Figure 9.4, to handle the details of manipulating Endpoint Addresses.

Figure 9.4 The EndpointAddress interface and implementation.

Instead of specifying an Endpoint Address in a transport-specific form, such as
tcp://10.6.18.38, higher-level services in JXTA use a transport-neutral
Endpoint Address of this form:

jxta://<unique Peer ID>

The jxta protocol specifier is used to indicate the JXTA-specific Endpoint
Routing Protocol.This form of Endpoint Address is used to allow JXTA peers
to act independently of the network transport. By using the jxta form of the
address, a peer can send messages via the Endpoint Routing Protocol as if
connecting directly to the remote peer. In fact, the message might travel

 <<Interface>>
 EndpointAddress
(from net.jxta.endpoint)

getProtocolName() : java.lang.String
getProtocolAddress() : java.lang.String
getServiceName() : java.lang.String
getServiceParameter() : java.lang.String
getProtocolName(name : java.lang.String) : void
getProtocolAddress(address : java.lang.String) : void
getServiceName(name : java.lang.String) : void
getServiceParameter(parameter : java.lang.String) : void
clone() : java.lang.Object

 Address
(from net.jxta.impl.endpoint)

11_2344 Ch 09 5/14/02 11:43 AM Page 257

258 Chapter 9 The Endpoint Routing Protocol

through several peers, a fact that is unknown to the peer. In this way, the
Endpoint Routing Protocol abstracts the details of the underlying network
topology, allowing a peer to act as if it is capable of connecting directly to a
remote peer.

Message Formatting
Unlike the other services in JXTA, no corresponding protocol defines the for-
mat of messages sent by the Endpoint service.Although the endpoint protocol
implementations are ultimately responsible for handling the details of format-
ting a message, the reference protocol implementations share code to render a
message from the internal XML object structure into a format suitable for
transport over the network. Currently, a transport can use two possible output
formats to render a Message object:

n Binary message format—The message elements are rendered into
simple binary byte stream.This functionality is encapsulated in the
MessageWireFormatBinary class in the net.jxta.impl.endpoint package.
This format of the output produced by this class is specified by the
application/x-jxta-msg MIME type.

n XML message format—The message is rendered from the Message
object’s representation of an XML tree into real XML output.This
functionality is encapsulated in the MessageWireFormatXML class in the
net.jxta.impl.endpoint package.This format of the output produced
by this class is specified by the text/xml MIME type.

Both MessageWireFormatXML and MessageWireFormatBinary extend the
MessageWireFormat abstract class. Endpoint protocol implementations create
an instance of a specific type of wire-formatting object using the
MessageWireFormatFactory class and specifying the appropriate MIME type to
the newMessageWireFormat method. It is up to the endpoint protocol implemen-
tation to choose the output format most appropriate to its particular network
transport.

Using the Endpoint Service
To demonstrate the use of the Endpoint service, this section develops an appli-
cation similar to the one in Chapter 7,“The Peer Information Protocol.”The
difference is that this example uses the Endpoint service on which pipes are
built to provide the messaging functionality.

11_2344 Ch 09 5/14/02 11:43 AM Page 258

259Using the Endpoint Service

Receiving Incoming Messages
It should come as no surprise that the EndpointService is structured in a similar
way to those services built on top of it.The Endpoint service provides the
EndpointListener interface in net.jxta.endpoint, shown in Figure 9.5, to allow
other services to receive notification of arriving messages.

 <<Interface>>
 EndpointListener
(from net.jxta.endpoint)

processIncomingMessage(message : net.jxta.endpoint.Message, srcAddr : net.jxta.endpoint.EndpointAddress, destAddr : net.jxta.endpoint.EndpointAddress) : void

Figure 9.5 The EndpointListener interface.

The sole method that developers need to implement, processIncomingMessage,
accepts the arriving Message object as well as the source and destination
Endpoint Addresses:

public void processIncomingMessage(Message message,
EndpointAddress source, EndpointAddress destination);

To listen for messages arriving for a specific service, a developer needs only to
register an EndpointListener instance with the EndpointService instance using the
EndpointService.addListener method:

public void addListener(String address, EndpointListener listener)
throws IllegalArgumentException;

The EndpointListener’s processIncomingMessage method is called whenever a
Message arriving at the peer contains a destination Endpoint Address that
specifies a service matching the address value.

Note that when registering an EndpointListener, the address value that you
pass shouldn’t be just the name of the destination service. Instead, the address
should be the concatenation of the destination service name and service para-
meters that are part of the destination Endpoint Address.This is an area that is
ambiguous in the current reference implementation and will be refined in
future releases.

To demonstrate the use of the EndpointListener and EndpointService inter-
faces, the EndpointServer example in Listing 9.1 starts the JXTA platform and
adds itself to the EndpointService instance as a listener for messages addressed to
a service with the name EndpointServer plus the same Peer Group ID with the
parameters 012345.

11_2344 Ch 09 5/14/02 11:43 AM Page 259

260 Chapter 9 The Endpoint Routing Protocol

Listing 9.1 Source Code for EndpointServer.java

package com.newriders.jxta.chapter9;

import java.util.Enumeration;

import net.jxta.endpoint.EndpointAddress;

import net.jxta.endpoint.EndpointProtocol;

import net.jxta.endpoint.EndpointService;

import net.jxta.endpoint.EndpointListener;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.endpoint.Address;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

/**

* A simple server that listens on an endpoint, looking for

* Messages destined for a service named EndpointServer

* concatenated with the Peer Group ID, with service

* parameters 012345.

*/

public class EndpointServer implements EndpointListener

{

/**

* The peer group for the application.

*/

private PeerGroup peerGroup = null;

/**

* The service name to use when listening for messages.

* This service name will be appended with the Peer Group ID

* of the peer group when the JXTA platform is started.

*/

private String serviceName = “EndpointServer”;

/**

* The service parameters to use when listening for

* messages.

11_2344 Ch 09 5/14/02 11:43 AM Page 260

261Using the Endpoint Service

*/

private String serviceParameters = “012345”;

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can’t be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service

// name so the endpoint listener is specific to

// the peer group.

serviceName += peerGroup.getPeerGroupID().toString();

}

/**

* Runs the application: starts the JXTA platform, starts

* listening on the Endpoint service for messages.

*

* @param args the command-line arguments passed to

* the application.

*/

public static void main(String[] args)

{

EndpointServer server = new EndpointServer();

try

{

// Initialize the JXTA platform.

server.initializeJXTA();

// Start the server.

server.start();

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “

continues

11_2344 Ch 09 5/14/02 11:43 AM Page 261

262 Chapter 9 The Endpoint Routing Protocol

+ e);

System.exit(1);

}

}

/**

* The EndpointListener implementation. Accepts an incoming

* message for processing.

*

* @param message the Message that has arrived for

* processing.

* @param source the EndpointAddress of the peer sending

* the message.

* @param destination the EndpointAddress of the

* destination peer for the message.

*/

public void processIncomingMessage(Message message,

EndpointAddress source, EndpointAddress destination)

{

System.out.println(“Message received from “ + source

+ “ for “ + destination + “:”);

System.out.println(message.getString(“MessageText”));

}

/**

* Start the server listening on the Endpoint service.

*/

public void start()

{

EndpointService endpoint =

peerGroup.getEndpointService();

// Print out all of the endpoint protocol addresses.

// These can be used by the EndpointClient to send a

// message to the EndpointServer.

EndpointProtocol aProtocol = null;

Enumeration protocols = endpoint.getEndpointProtocols();

while (protocols.hasMoreElements())

Listing 9.1 Continued

11_2344 Ch 09 5/14/02 11:43 AM Page 262

263Using the Endpoint Service

{

aProtocol =

(EndpointProtocol) protocols.nextElement();

// Print out the address.

System.out.println(“Endpoint address: “

+ aProtocol.getPublicAddress().toString());

}

// Add ourselves as a listener to the Endpoint service.

endpoint.addListener(serviceName + serviceParameters,

this);

}

}

By itself, the EndpointServer example isn’t very useful without another peer
capable of sending messages to the EndpointServer service for the peer group.
Peers can propagate a message to many peers using the Endpoint service or
send a message directly to a specific peer using an EndpointMessenger.

Propagating Messages Using the Endpoint Service
Propagating a message to a number of remote peers works in a similar fashion
to using propagation pipes, but without the requirement for you to find and
bind an output pipe. However, unlike propagation pipes, the Endpoint service
cannot propagate messages across firewall and NAT boundaries. Propagation
across firewalls and network boundaries is a feature offered by the Rendezvous
service, explained in Chapter 6,“The Rendezvous Protocol,” which builds on
the Endpoint service to provide this capability. Propagation using the Endpoint
service is built on the capabilities of registered endpoint protocol implementa-
tions to broadcast to a number of Endpoint Addresses simultaneously.This
functionality is not available in all network transports, such as HTTP, but it is
available in low-level network transports, such as TCP.The reference imple-
mentation of the Endpoint service provides propagation using only the TCP
endpoint protocol implementation and is thus limited to propagating messages
within the boundaries of a LAN segment.

EndpointPropagateClient in Listing 9.2 provides a simple example of the ele-
ments necessary to propagate a message using the EndpointService instance.

11_2344 Ch 09 5/14/02 11:43 AM Page 263

264 Chapter 9 The Endpoint Routing Protocol

Listing 9.2 Source Code for EndpointPropagateClient.java

package com.newriders.jxta.chapter9;

import java.io.IOException;

import net.jxta.endpoint.EndpointAddress;

import net.jxta.endpoint.EndpointService;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

/**

* A simple client that uses the Endpoint service to propagate

* messages to a service named EndpointServer concatenated

* with the Peer Group ID, with the service parameters 012345

* on all peers in the local LAN segment.

*/

public class EndpointPropagateClient

{

/**

* The peer group for the application.

*/

private PeerGroup peerGroup = null;

/**

* The service name to use when listening for messages.

* This service name will be appended with the Peer Group ID

* of the peer group when the JXTA platform is started.

*/

private String serviceName = “EndpointServer”;

/**

* The service parameters to use when listening for

* messages.

*/

private String serviceParameters = “012345”;

11_2344 Ch 09 5/14/02 11:43 AM Page 264

265Using the Endpoint Service

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can’t be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service

// name so the message is sent to the version of the

// endpoint listener specific to this peer group.

serviceName += peerGroup.getPeerGroupID().toString();

}

/**

* Runs the application: starts the JXTA platform, accepts

* user input messages, and propagates them to other peers.

*

* @param args the command-line arguments passed to the

* application.

*/

public static void main(String[] args)

{

EndpointPropagateClient client =

new EndpointPropagateClient();

try

{

boolean done = false;

String messageString = null;

// Initialize the JXTA platform.

client.initializeJXTA();

while (!done)

{

// Reset the message string.

messageString = null;

// Get the message; if the message is ‘.’,

continues

11_2344 Ch 09 5/14/02 11:43 AM Page 265

266 Chapter 9 The Endpoint Routing Protocol

// then quit the application.

System.out.print(“Enter a message (or ‘.’ “

+ “to quit): “);

messageString = client.readInput();

if ((messageString.length() > 0)

&& (!messageString.equals(“.”)))

{

// Send a message to the server.

client.sendMessage(messageString);

}

else

{

// We’re done.

done = true;

}

}

// Stop the JXTA platform. Currently, there isn’t

// any nice way to do this.

System.exit(0);

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “

+ e);

System.exit(1);

}

}

/**

* Read a line of input from the system console.

*

* @return the String read from the System.in InputStream.

*/

public String readInput()

{

StringBuffer result = new StringBuffer();

boolean done = false;

int character;

Listing 9.2 Continued

11_2344 Ch 09 5/14/02 11:43 AM Page 266

267Using the Endpoint Service

while (!done)

{

try

{

// Read a character.

character = System.in.read();

// Check to see if the character is a newline.

if ((character == -1)

|| ((char) character == ‘\n’))

{

done = true;

}

else

{

// Add the character to the result string.

result.append((char) character);

}

}

catch (IOException e)

{

done = true;

}

}

return result.toString().trim();

}

/**

* Sends a message. In this case, the message string is

* propagated to all peers in the peer group on the local

* LAN segment.

*

* @param messageString the message to send to other

* peers.

*/

public void sendMessage(String messageString)

{

EndpointService endpoint =

peerGroup.getEndpointService();

// Create a new message.

continues

11_2344 Ch 09 5/14/02 11:43 AM Page 267

268 Chapter 9 The Endpoint Routing Protocol

Message message = endpoint.newMessage();

// Populate the message contents with the messageString.

message.setString(“MessageText”, messageString);

try

{

// Propagate the message within the peer group.

endpoint.propagate(message, serviceName,

serviceParameters);

}

catch (IOException e)

{

System.out.println(“Error sending message: “ + e);

}

}

}

To propagate a message, create a Message object using the EndpointService’s
createMessage method, and populate it in the same fashion as when sending a
message using a pipe.As with any Message, multiple elements can be added. In
the example, a single element called MessageText containing the outgoing text
being sent to the remote peer is added using the following code:

// Populate the message contents with the messageString.
message.setString(“MessageText”, messageString);

It is propagated to other peers using this code:
// Propagate the message within the peer group.
endpoint.propagate(message, serviceName, serviceParameters);

The EndpointService.propagate method takes not only the message being prop-
agated, but also the name of the destination service and parameters to pass to
the destination service.

Using EndpointServer and EndpointPropagateClient
As with the PipeServer and PipeClient examples created in Chapter 8, using
EndpointServer and EndpointPropagateClient requires two separate instances of
the JXTA platform.To prepare to run the EndpointServer and
EndpointPropagateClient examples, follow these steps:

Listing 9.2 Continued

11_2344 Ch 09 5/14/02 11:43 AM Page 268

269Using the Endpoint Service

1. Create two directories, placing the EndpointServer source code in one
directory and the EndpointPropagateClient source code in the other.

2. Copy all of the JAR files from the lib directory under the JXTA
Demo install directory into each directory.

3. Start a command console and change to the directory containing the
EndpointServer code.

4. Compile EndpointServer using javac -d . -classpath
➥.;beepcore.jar;cms.jar;cryptix32.jar;cryptix-

➥asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.

➥jar;log4j.jar;minimalBC.jar EndpointServer.java.

5. Start the EndpointServer using java -classpath
➥.;beepcore.jar;cms.jar;cryptix32.jar;cryptix-

➥asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.

➥jar;log4j.jar;minimalBC.jar com.newriders.jxta.chapter9.EndpointServer.

EndpointServer starts and prints the Endpoint Address for each of the pro-
tocols registered with the EndpointService instance.This isn’t used in this
example, but it will be used when demonstrating the use of
EndpointMessenger.

6. Start a second command console and change to the directory containing
the EndpointPropagateClient code.

7. Compile EndpointPropagateClient using javac -d . -classpath .;beepcore
➥.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;instantp2p.jar;jxta.jar;

➥jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar

➥EndpointPropagateClient.java.

8. Start EndpointPropagateClient using java -classpath .;beepcore.jar;cms.
➥jar;cryptix32.jar;cryptix-asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.

➥jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar com.

➥newriders.jxta.chapter9.EndpointPropagateClient.

EndpointPropagateClient starts and prompts for a message to send. Each message
can be only one line long, and the client continues to prompt for a message
until a . is entered as a message.The client then quits.

Each message entered into EndpointPropagateClient should appear in the out-
put of EndpointServer. However, to truly see the effect of propagation, you
might want to create a copy of the directory containing the EndpointServer
code to run a second instance of EndpointServer.This enables you to see multi-
ple peers receiving the message propagated by the client and illustrates the
difference between propagation and the technique used by the example in the
next section.When starting a second instance of EndpointServer, be sure to
configure a different TCP and HTTP port for the JXTA platform.

11_2344 Ch 09 5/14/02 11:43 AM Page 269

270 Chapter 9 The Endpoint Routing Protocol

Sending Messages Directly Using EndpointMessenger
The disadvantage of the propagation demonstrated in the previous example is
that it’s wasteful. Peers that might not be interested in the message receive the
message, only to discard it. In the reference implementation, the TCP endpoint
protocol implementation’s use of TCP multicast limits this inefficiency to peers
on the local LAN segment.To improve efficiency, it would be useful if a mes-
sage could be sent to one specific peer using the EndpointService instance.

In fact, EndpointService does support this functionality through the
EndpointMessenger interface.The EndpointProtocol interface allows a developer to
obtain an EndpointMessenger instance for the endpoint protocol implementa-
tion.This object can be used to send messages to a specific peer located at a
specific EndpointAddress.This functionality is used by the reference implemen-
tation to provide an implementation of the OutputPipe interface.

When starting EndpointServer in the “Using EndpointServer and
EndpointPropagateClient” section, the EndpointServer prints the EndpointAddress for
each protocol currently registered with the EndpointService instance. Each
address follows the same basic format outlined in the “Endpoint Addresses”
section earlier in this chapter.The example in Listing 9.3 prompts the user for
a message and a destination address, and attempts to send the message using
EndpointMessenger.

Listing 9.3 Source Code for EndpointMessengerClient.java

package com.newriders.jxta.chapter9;

import java.io.IOException;

import net.jxta.endpoint.EndpointAddress;

import net.jxta.endpoint.EndpointMessenger;

import net.jxta.endpoint.EndpointService;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

/**

* A simple Endpoint client that sends a message directly to a

* service named EndpointServer concatenated with the Peer

* Group ID, with service parameters 012345 on a specific peer

* located at an Endpoint Address using an EndpointMessenger.

11_2344 Ch 09 5/14/02 11:43 AM Page 270

271Using the Endpoint Service

*/

public class EndpointMessengerClient

{

/**

* The peer group for the application.

*/

private PeerGroup peerGroup = null;

/**

* The service name to use when listening for messages.

* This service name will be appended with the Peer Group ID

* of the peer group when the JXTA platform is started.

*/

private String serviceName = “EndpointServer”;

/**

* The service parameters to use when listening for

* messages.

*/

private String serviceParameters = “012345”;

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can’t be started.

*/

public void initializeJXTA() throws PeerGroupException

{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service

// name so the message is sent to the version of the

// endpoint listener specific to this peer group.

serviceName += peerGroup.getPeerGroupID().toString();

}

/**

* Runs the application: starts the JXTA platform, accepts

* user input message and endpoint info, and sends the

* message to the Endpoint Address specified.

*

continues

11_2344 Ch 09 5/14/02 11:43 AM Page 271

272 Chapter 9 The Endpoint Routing Protocol

* @param args the command-line arguments passed to the

* application.

*/

public static void main(String[] args)

{

EndpointMessengerClient client =

new EndpointMessengerClient();

try

{

boolean done = false;

String messageString = null;

String addressString = null;

// Initialize the JXTA platform.

client.initializeJXTA();

while (!done)

{

// Reset the strings.

addressString = null;

messageString = null;

// Get the message; if the message is ., then

// quit the application.

System.out.print(“Enter a message (or ‘.’ “

+ “ to quit): “);

messageString = client.readInput();

if ((messageString.length() > 0)

&& (!messageString.equals(“.”)))

{

// Get the destination Endpoint Address

// from the user.

System.out.print(

“Enter an endpoint address: “);

while ((addressString == null)

|| (addressString.length() == 0))

{

addressString = client.readInput();

}

Listing 9.3 Continued

11_2344 Ch 09 5/14/02 11:43 AM Page 272

273Using the Endpoint Service

// Send a message to the server.

client.sendMessage(

messageString, addressString);

}

else

{

// We’re done.

done = true;

}

}

// Stop the JXTA platform. Currently, there isn’t

// any nice way to do this.

System.exit(0);

}

catch (PeerGroupException e)

{

System.out.println(“Error starting JXTA platform: “

+ e);

System.exit(1);

}

}

/**

* Read a line of input from the system console.

*

* @return the String read from the System.in InputStream.

*/

public String readInput()

{

StringBuffer result = new StringBuffer();

boolean done = false;

int character;

while (!done)

{

try

{

// Read a character.

character = System.in.read();

// Check to see if the character is a newline.

if ((character == -1)

|| ((char) character == ‘\n’)) continues

11_2344 Ch 09 5/14/02 11:43 AM Page 273

274 Chapter 9 The Endpoint Routing Protocol

{

done = true;

}

else

{

// Add the character to the result string.

result.append((char) character);

}

}

catch (IOException e)

{

done = true;

}

}

return result.toString().trim();

}

/**

* Sends a message. In this case, the message string is sent

* to the Endpoint Address specified, provided that the

* Endpoint Address responds to a ping.

*

* @param messageString the message to send to the peer.

* @param addressString the Endpoint Address of the

* destination peers.

*/

public void sendMessage(String messageString,

String addressString)

{

EndpointService endpoint =

peerGroup.getEndpointService();

EndpointAddress endpointAddress =

endpoint.newEndpointAddress(addressString);

// Manipulate the Endpoint Address to include the

// appropriate destination service name and parameters.

endpointAddress.setServiceName(serviceName);

endpointAddress.setServiceParameter(serviceParameters);

Listing 9.3 Continued

11_2344 Ch 09 5/14/02 11:43 AM Page 274

275Using the Endpoint Service

// Check that we can reach the Endpoint Address.

if (endpoint.ping(endpointAddress))

{

// Create a new message.

Message message = endpoint.newMessage();

// Populate the message contents with the

// messageString.

message.setString(“MessageText”, messageString);

try

{

EndpointMessenger messenger =

endpoint.getMessenger(endpointAddress);

if (messenger != null)

{

// Send the message directly to the Endpoint

// Address specified.

messenger.sendMessage(message);

}

else

{

System.out.println(“Unable to create “

+ “messenger for given address.”);

}

}

catch (IOException e)

{

System.out.println(“Error creating messenger “

+ “or sending message: “ + e);

}

}

else

{

System.out.println(“Unable to reach specified “

+ “address!”);

}

}

}

11_2344 Ch 09 5/14/02 11:43 AM Page 275

276 Chapter 9 The Endpoint Routing Protocol

Running the EndpointMessengerClient example requires similar steps to those
outlined in the section “Using EndpointServer and EndpointPropagateClient”:

1. Start an instance of EndpointServer.

2. Copy the EndpointMessengerClient source code into the same directory
where you previously copied EndpointPropagateClient.

3. Compile EndpointMessengerClient using javac -d . -classpath .;beepcore.
➥jar;cms.jar;cryptix32.jar;cryptixasn1.jar;instantp2p.jar;jxta.jar;

➥jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar

➥EndpointMessengerClient.java.

4. Start EndpointMessengerClient using java -classpath .;beepcore.jar;cms.
➥jar;cryptix32.jar;cryptix-asn1.jar;instantp2p.jar;jxta.jar;jxtaptls.

➥jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar com.

➥newriders.jxta.chapter9.EndpointMessengerClient.

EndpointMessengerClient starts and prompts you to enter a message.After you
have entered a message, the client prompts for a destination Endpoint Address.
Enter one of the Endpoint Addresses printed by EndpointServer when it started.

The difference between EndpointMessengerClient and EndpointPropagateClient
will become obvious if you copy the client directory and start a second
instance of EndpointServer. Unlike in the EndpointPropagateClient example,
only the server specified by the Endpoint Address entered into
EndpointMessengerClient will receive the message.

The Endpoint Filter Listener
One other feature offered by the EndpointService interface is the capability to
add filter listeners implementing the EndpointFilterListener interface (shown in
Figure 9.6), defined in net.jxta.endpoint. EndpointFilterListener implementa-
tions can be registered with the EndpointService instance to allow a developer
to arbitrarily preprocess incoming messages before they are handed off to the
registered EndpointListener implementations.

 <<Interface>>
 EndpointFilterListener
 (from net.jxta.endpoint)

processIncomingMessage(message : net.jxta.endpoint.Message, srcAddr : net.jxta.endpoint.EndpointAddress, destAddr : net.jxta.endpoint.EndpointAddress) : net.jxta.endpoint.Message

Figure 9.6 The EndpointFilterListener interface.

11_2344 Ch 09 5/14/02 11:43 AM Page 276

277Using the Endpoint Service

Currently, the EndpointFilterListener interface is implemented by the
EndpointServiceStatsFilter class in net.jxta.impl.util.This class is used to
collect the message throughput statistics delivered by the Peer Information
Protocol.The Rendezvous service reference implementation,
RendezVousServiceImpl, also uses an inner class, FilterListener, to implement
EndpointFilterListener.This implementation is used to prevent uncontrolled
propagation and loopbacks.

Filter listeners are added to the Endpoint service using the
EndpointService.addFilterListener method:

public void addFilterListener(String elementName,
EndpointFilterListener listener, boolean incoming)

throws IllegalArgumentException;

When registering a filter listener, the caller specifies whether the listener
should be called to process incoming or outgoing messages. In addition, the
caller specifies the name of a message element that a message must contain
before the filter will be applied. Only those messages containing an element
with a matching element name will have the filter applied to the message.

To understand how filters are applied to incoming messages, it is necessary
to understand how incoming messages flow from an endpoint protocol imple-
mentation to registered EndpointListener instances.When an endpoint protocol
implementation receives a complete message from a remote peer, it calls the
EndpointService.demux method.The demux method implementation is responsible
for first preprocessing the message using the registered EndpointFilterListener
instances and then notifying registered EndpointListener instances.The demux
method acts as a callback, freeing an endpoint protocol implementation from
the duty of applying filters and notifying listeners itself.

In the current reference implementation, filters are not applied on outgoing
messages. However, there is already some code in place, indicating that this fea-
ture will be implemented soon.

Although both EndpointListener and EndpointFilterListener define only a
single processIncomingMessage method, there is one important difference
between the two interfaces. Unlike EndpointListener, EndpointFilterListener’s
version of processIncomingMessage returns a Message object.This object is used as
input into subsequent filters and finally is used to either send the outgoing
message to other peers or notify registered EndpointListener instances. If an
EndpointFilterListener returns a null object, the message is discarded.

11_2344 Ch 09 5/14/02 11:43 AM Page 277

278 Chapter 9 The Endpoint Routing Protocol

Introducing the Endpoint Routing Protocol
After examining the example code and the explanation of the EndpointProtocol
and EndpointMessenger interfaces, you’ve probably realized that JXTA needs a
mechanism to send messages between peers that aren’t directly connected.
Although the HTTP endpoint protocol implementation in the reference
implementation provides router peer functionality that allows a message to
traverse a firewall, a peer still needs some way to learn of the existence of the
router peer in the first place. Because router peers may enter or leave the
network spontaneously, a peer needs a routing mechanism that works even in
situations in which the route between two peers is constantly changing. Enter
the Endpoint Routing Protocol.

If two peers cannot communicate directly using a common endpoint
protocol implementation, the Endpoint Routing Protocol provides each peer
with a way to discover how it can send messages to the other peer via an
intermediary, using only available endpoint protocol implementations
(see Figure 9.7).

Rendezvous Peer 11

Peer 21. Peer 1 wants to send a

message to Peer 4, but is

unable to connect to it

directly. Peer 1 sends a

Route Query Message to

its known simple peers

and rendezvous peers to

try to determine a route to

Peer 4.

2. Rendezvous Peer 1,

knowing a route to Peer 4,

sends a Route Response

Message to Peer 1.

Peer 3

Peer 4

3. Peer 1 receives the

Route Response Message

and adds an Endpoint

Router Message to the

message it wants to send

to Peer 4. It sends this

message to the first

Endpoint Address provided

in the returned route

information.

4. Peer 3 receives the

Endpoint Router Message,

determines the next peer

in the route, amends the

Endpoint Router Message,

and sends the message

on to the next Endpoint

Address in the route.

5. Peer 4 receives the

Endpoint Router Message

and determines that it is

the final destination for the

message. The original

message is extracted and

sent to the appropriate

service via the Endpoint

service.

Peer

Figure 9.7 Flow of the Endpoint Routing Protocol.

11_2344 Ch 09 5/14/02 11:43 AM Page 278

279Introducing the Endpoint Routing Protocol

The Endpoint Routing Protocol, also called the Peer Endpoint Protocol, pro-
vides a mechanism for a message to be sent to a remote peer using discovered
route information. Each intermediary along the message route is responsible
for passing the message on to the next peer described by the route informa-
tion until the message reaches its ultimate destination.

For now, only two messages are required to determine route information:
the Route Query Message and the Route Response Message.The current
JXTA Protocols Specification defines three other messages for the Endpoint
Routing Protocol: the Ping Query Message, the Ping Response Message, and
the NACK Message.These messages allow a peer to test that a message can be
routed to a destination peer and also allow an intermediary peer to signal the
sender that an attempt to route a message has failed.These messages are not
currently available in the reference implementation and will not be discussed.

The Endpoint Routing Protocol defines one other message, the Endpoint
Router Message, which is used to pass route information along with a mes-
sage. Peers along the message’s path as it travels to its destination use the extra
information provided by the Endpoint Router Message to determine the next
peer en route to the destination.

The Route Query Message
A Route Query Message is sent by a peer when it wants to determine the set
of ordered peers to use to send a message to a given Endpoint Address. Listing
9.4 shows the elements of the Router Query Message.

Listing 9.4 The Route Query Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:EndpointRouter>

<Type>RouteQuery</Type>

<DestPeer> . . . </DestPeer>

<RoutingPeerAdv> . . . </RoutingPeerAdv>

</jxta:EndpointRouter>

Each element in the Route Query Message describes one aspect required to
perform the search for route information:

n Type—A required element describing the type of Endpoint Router mes-
sage being sent. For the Route Query Message, this element is set to
RouteQuery.

11_2344 Ch 09 5/14/02 11:43 AM Page 279

280 Chapter 9 The Endpoint Routing Protocol

n DestPeer—An optional element containing the Endpoint Address of the
final destination peer in the route being discovered.Any route returned
in response to this Route Query Message provides a route that allows a
message to be sent from the local peer to the peer specified by DestPeer.

n RoutingPeerAdv—An optional element containing the Peer Advertisement
of the peer requesting route information.

To discover route information, a peer sends a Route Query Message to other
peers that it has previously discovered. In addition to finding peers by peer dis-
covery, a peer may learn of another peer’s existence by processing a Route
Query Message and extracting the RoutingPeerAdv, if one has been passed. By
reusing this Peer Advertisement, the peer can save network bandwidth and
potentially reduce the time required to obtain route information, resulting in
improved performance.

As with any of the core protocols, a query might not result in a response or
might result in multiple responses.

The Route Response Message
To provide a reply to a Route Query Message, a peer sends a Route Response
Message describing a set of ordered Endpoint Addresses to use to send a mes-
sage to a given destination peer.The Route Response Message has the format
shown in Listing 9.5.

Listing 9.5 The Route Response Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:EndpointRouter>

<Version>2</Version>

<Type>RouteResponse</Type>

<DestPeerIdTag> . . . </DestPeerIdTag>

<RoutingPeerIdTag> . . . </RoutingPeerIdTag>

<NbOfHops> . . . </NbOfHops>

<RoutingPeerAdvTag> . . . </RoutingPeerAdvTag>

<GatewayForward> . . . </GatewayForward>

</jxta:EndpointRouter>

The Route Response Message contains similar information to the Route
Query Message, with the exception that it contains the route information
requested by the peer:

11_2344 Ch 09 5/14/02 11:43 AM Page 280

281Introducing the Endpoint Routing Protocol

n Version—A required element containing an integer describing the ver-
sion of the Endpoint Routing Protocol being employed in the protocol
conversation.Although the Protocols Specification defines this as a
required element for both the Route Query and Response Message for-
mats, the reference implementation currently adds it only in the Route
Response Message.At this time, the Version is set to 2.

n Type—A required element containing a string describing the type of
Endpoint Router Message being sent. For the Route Response Message,
this element is set to RouteResponse.

n DestPeerIdTag—An optional element containing the Endpoint Address of
the final destination peer in the route being discovered.This should
match the Endpoint Address passed in the original Route Query
Message’s DestPeerIdTag element.

n RoutingPeerIdTag—An optional element containing the Endpoint Address
of the peer that is acting as a source of route information.This will most
likely be called RoutingPeer in the future because it contains an Endpoint
Address rather than a Peer ID.

n RoutingPeerAdvTag—An optional element containing the Peer
Advertisement of the peer requesting route information.

n NbOfHops—An optional element containing the number of network hops
in the route to the destination peer.

n GatewayForward—An optional element containing the Endpoint Address of
a peer along the route to the destination peer.There may be several
GatewayForward elements in a Route Response Message, and the route
depends on the order of these elements.The GatewayForward elements
describe the path in order of Endpoint Addresses that a message must
visit to reach a destination peer.

When a peer receives a Route Query Message, it checks to see if it knows
how to route a message to the specified destination peer. If so, it returns the
route information in a Route Response Message; otherwise, the current refer-
ence implementation discards the query and returns no response.

The Endpoint Router Message
The Endpoint Router Message provides the information required to route a
message to its destination after the message has left its source peer. Rather than
encapsulating the message being routed, the Endpoint Router Message simply

11_2344 Ch 09 5/14/02 11:43 AM Page 281

282 Chapter 9 The Endpoint Routing Protocol

adds routing information alongside the other content of a message.The
Endpoint Router Message provides the route information in the format in
Listing 9.6.

Listing 9.6 The Endpoint Router Message XML

<jxta:JxtaEndpointRouter>

<jxta:Src> . . . </jxta:Src>

<jxta:Dest> . . . </jxta:Dest>

<jxta:Last> . . . </jxta:Last>

<jxta:NBOH> . . . </jxta:NBOH>

<jxta:GatewayForward> . . . </jxta:GatewayForward>

<jxta:GatewayReverse> . . . </jxta:GatewayReverse>

</jxta:JxtaEndpointRouter>

Each element provides information required to route a message to the destina-
tion peer and also how to route a response message to the source peer:

n Src—A required element containing the Endpoint Address of the original
peer responsible for sending the message.

n Dest—A required element containing the Endpoint Address of the desti-
nation peer for the message.

n Last—An optional element containing the Endpoint Address of the pre-
vious peer in the routing order.This address corresponds to the peer
responsible for sending a message to the current peer.

n NBOH—An optional element containing the number of network hops con-
tained in the reverse route. If this parameter is set to 0, it indicates that
the message doesn’t contain reverse routing information.

n GatewayForward—An optional element containing the Endpoint Address of
a peer along the route to the destination peer.There may be several
GatewayForward elements in a Route Response Message, and the route
depends on the order of these elements.The GatewayForward elements
describe the path in order of Endpoint Addresses that a message must
visit to reach a destination peer.

n GatewayReverse—An optional element containing the Endpoint Address of
a peer along the route from the destination peer to the source peer.
There may be several GatewayReverse elements in a Route Response
Message, and the reverse route depends on the order of these elements.
The GatewayReverse elements describe the path in order of Endpoint
Addresses that a message must visit to reach the original source peer.

11_2344 Ch 09 5/14/02 11:43 AM Page 282

283The Endpoint Router Transport Protocol

As a peer receives an Endpoint Router Message, it determines the next peer in
the route, modifies the Endpoint Router Message, and sends the message on to
the next peer.The next peer in the route can be determined by either sending
a Route Query Message or consulting the GatewayForward elements in the
Endpoint Router Message accompanying the message.

Although a peer isn’t required to populate the GatewayForward and
GatewayReverse elements of the Endpoint Router Message before sending the
message to the next peer, the JXTA Protocols Specification encourages peers
to add this information.Adding this information not only reduces the process-
ing and route query overhead required at each point along the route, but it
also improves the performance of the routing process.

The Endpoint Router Transport Protocol
Up to this point, you might have assumed that the Endpoint Routing Protocol
is implemented as a service, just like all the other core protocols in JXTA.
However, to simplify the implementation of the Endpoint Routing Protocol, it
is implemented as an endpoint protocol implementation, bound within the
Endpoint service to the jxta protocol specifier.This endpoint protocol imple-
mentation, called the Endpoint Router Transport Protocol, is invoked when a
message is sent to an Endpoint Address of the form jxta://<Peer ID unique
format>.The mechanism is invoked in exactly the same fashion that the TCP
endpoint protocol implementation gets invoked when sending a message to an
Endpoint Address of the form tcp://10.6.18.38.

Because the Endpoint Router Transport Protocol is invoked automatically
to handle messages being sent to Endpoint Addresses for the Endpoint Router,
the developer never has to interact with the endpoint protocol implementa-
tion directly.To send a message to a remote peer via the Endpoint Router
Transport, a developer needs only to create an Endpoint Router Endpoint
Address from the Peer ID of the destination peer:

PeerID peerId;
EndpointServer endpoint;
. . .
String asString = “jxta://” + peerId.getUniqueValue().toString();
EndpointAddress address = endpoint.newEndpointAddress(asString);

After the EndpointAddress has been created, the service name and service para-
meters can be set, just as with any other Endpoint Address.The message can
then be sent to the remote peer via the Endpoint Routing Transport Protocol
by using the EndpointService to obtain an EndpointMessenger object for the
EndpointAddress.

11_2344 Ch 09 5/14/02 11:43 AM Page 283

284 Chapter 9 The Endpoint Routing Protocol

The Endpoint Router Transport Protocol in the reference implementation
is provided by the EndpointRouter class in the net.jxta.impl.endpoint package.
When the getMessenger method is called via the EndpointService.getMessenger
method, EndpointRouter transparently handles determining route information,
either from cached information or from sending Route Query Messages. If a
direct connection is possible using one of the registered endpoint protocol
implementations, the method returns the appropriate messenger; otherwise, the
method returns an EndpointRouter.EndpointRouterMessenger object.This class
implements EndpointMessenger and adds an Endpoint Router Message to out-
going message.The important point to realize here is that the Endpoint service
is responsible for masking all of this from the developer.As long as the jxta://
form of the Endpoint Address is used, the EndpointService instance handles the
details of finding the right endpoint protocol implementation or routing
information in a transparent fashion.

The Endpoint Routing Transport Protocol is incapable of propagating
messages to multiple peers, and the reference implementation provides an
empty implementation for EndpointProtocol.propagate. However, propagation
isn’t really the responsibility of the Endpoint Routing Transport Protocol.The
Rendezvous service is responsible for propagating messages via known ren-
dezvous peers when the peer is behind a firewall. Messages to individual
rendezvous peers sent by the RendezvousServiceImpl use EndpointMessenger,
allowing Endpoint Router–formatted Endpoint Addresses to correctly
invoke the Endpoint Routing protocol implementation.

Summary
In this chapter, you explored the Endpoint service and the Endpoint Routing
Protocol.These two elements are responsible for encapsulating and abstracting
network transport-specific details and hiding those details from higher services.
All that remains is to learn how to create new services and applications of
your own.To do this, Chapter 10 discusses services and peer groups, how they
relate, and how to create your own peer group and associate services with it.

11_2344 Ch 09 5/14/02 11:43 AM Page 284

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Peer Groups and Services

10

THE CONCEPT OF A PEER GROUP IS central to all aspects of the JXTA platform.
Peer groups provide a way of segmenting the P2P network space into distinct
communities of peers organized for a specific purpose.All the core protocols
explored in this book so far have depended on a peer group to provide the
context for operations performed by services. Before creating a sample applica-
tion, it is necessary to understand how JXTA peer groups are created and used
to gain access to services.

This chapter provides the information you need to use peer groups and to
understand how to create, join, or leave peer groups. Part of this coverage
includes how JXTA allows peer groups to create private peer groups that are
accessible to only authorized peers. In addition to the coverage of peer group
semantics, the chapter explores how to create new services and create a peer
group that can use these services.

12_2344 Ch 10 5/14/02 11:44 AM Page 285

286 Chapter 10 Peer Groups and Services

Modules, Services, and Applications
Before diving into the specifics of working with peer groups, it is essential to
understand the module framework employed by JXTA.The module frame-
work is designed to allow a developer to provide functionality within JXTA in
an extensible manner. Modules managed by the framework are responsible for
providing all aspects of JXTA’s functionality, including the implementation of
the peer group mechanism as well as services and applications that are pro-
vided by a peer group.

Understanding modules is essential to being able to write new services for
JXTA.To understand how these peer groups, services, and applications are
specified, you first need to understand the JXTA concept of a module. Simply
put, a module is some distributable chunk of functionality that a peer can
initialize, start, and stop. In addition to a plain module, JXTA provides the
concept of a service module, a component used by a peer to run a service,
and an application module, a component used by a peer to run an application.
An application module is different from an application that invokes JXTA.
An application that invokes JXTA can be comprised of several service and
application modules.

To enable peers to discover modules, the definition of a module is divided
into three types of advertisements: a Module Class Advertisement, a Module
Specification Advertisement, and a Module Implementation Advertisement.
Before diving into the specifics of each type of advertisement, it’s important to
understand how they are related.

Consider some of the problems inherent in creating a framework for mod-
ules in JXTA:

n Because JXTA is supposed to be language/platform agnostic, the module
framework needs to support multiple implementations of a given mod-
ule. For example, the Discovery service module might be implemented as
a Java class or as a C++ COM class.Therefore, the framework needs to
be capable of distinguishing among these module implementations, possi-
bly using some external metadata representation, such as an advertise-
ment.

n The capabilities of the module will invariably change over time.The per-
son or organization responsible for defining the module might want to
add or remove functionality, thus changing the specification of the mod-
ule. For example, the Peer Discovery Protocol specification might change
over time to add new search capabilities.Therefore, the module
framework must be capable of distinguishing among various versions
of a module, again using some metadata representation. In addition,

12_2344 Ch 10 5/14/02 11:44 AM Page 286

287Modules, Services, and Applications

each version of the module’s specification might have multiple
implementations, necessitating some link between the metadata describ-
ing a module implementation and the metadata describing the module’s
specification.

n There must be some way of referring to a module that provides a class of
functionality independent of a particular specification or implementation
of the module. For example, the JXTA Discovery service module is a
class of module that provides discovery services.Again, there must be
some relationship between the metadata describing a module specifica-
tion and the metadata describing the module’s class.

Each of these aspects is encapsulated by the Module Implementation, Module
Specification, and Module Class Advertisements, respectively.The discussion of
these advertisements in the following sections starts from the most general
advertisement describing a module, the Module Class Advertisement.

The Module Class Advertisement
The first advertisement, the Module Class Advertisement, doesn’t provide
information on a module implementation; it exists solely to announce the
existence of a class of module.The Module Class Advertisement provides only
the few pieces of information shown in Listing 10.1.

Listing 10.1 The Module Class Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MCA>

<MCID> . . . </MCID>

<Name> . . . </Name>

<Desc> . . . </Desc>

</jxta:MCA>

These pieces of information can be used by a peer to search for a module
based on one of the advertisement’s elements:

n MCID—A required element containing a Module Class ID.This ID
uniquely identifies a class of modules.The Module Class ID is used
as the basis for the IDs contained in the Module Specification and
Implementation Advertisements.

n Name—An optional element containing a simple name for the module
class.This string is not necessarily unique.

n Desc—An optional element containing a description of the module class.

12_2344 Ch 10 5/14/02 11:44 AM Page 287

288 Chapter 10 Peer Groups and Services

As with all other advertisement types in the reference implementation, the
implementation of the Module Class Advertisement is split into the abstract
definition ModuleClassAdvertisement, defined in net.jxta.protocol, and the refer-
ence implementation ModuleClassAdv, defined in net.jxta.impl.protocol.These
classes are shown in Figure 10.1.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleClassAdvertisement
 (from net.jxta.protocol)

ModuleClassAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleClassID() : net.jxta.platform.ModuleClassID
getName() : java.lang.String
setDescription(description : java.lang.String) : void
setModuleClassID(id : net.jxta.platform.ModuleClassID) : void
setName(name : java.lang.String) : void

 ModuleClassAdv
(from net.jxta.impl.protocol)

ModuleClassAdv(root : net.jxta.document.Element)
ModuleClassAdv()
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

Figure 10.1 The Module Class Advertisement classes.

Each class of modules has a unique Module Class Advertisement. For example,
the reference implementation of the Discovery service is associated with a
Module Class Advertisement that defines a class of modules responsible for
providing discovery capabilities. Modules that provide this capability also use
this same Module Class Advertisement.A different class of module, such as a
module that provides routing capabilities, is associated with a different Module
Class Advertisement.

The Module Specification Advertisement
The second advertisement responsible for defining a module is the Module
Specification Advertisement.The purpose of a Module Specification
Advertisement, shown in Listing 10.2, is to uniquely identify a set of protocol-
compatible modules.

12_2344 Ch 10 5/14/02 11:44 AM Page 288

289Modules, Services, and Applications

Listing 10.2 The Module Specification Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MSA>

<MSID> . . . </MSID>

<Name> . . . </Name>

<Crtr> . . . </Crtr>

<SURI> . . . </SURI>

<Vers> . . . </Vers>

<Desc> . . . </Desc>

<Parm> . . . </Parm>

<jxta:PipeAdvertisement> . . . </jxta:PipeAdvertisement>

<Proxy> . . . </Proxy>

<Auth> . . . </Auth>

</jxta:MSA>

The advertisement provides metadata on a version of the module’s specifica-
tion using the following elements:

n MSID—A required element containing a Module Specification ID that
uniquely identifies the module specification.The Module Specification
ID includes within it the Module Class ID identifying the class of mod-
ule to which this specification belongs.

n Name—An optional element containing a simple name for the module
specification.This string is not necessarily unique.

n Crtr—An optional element containing the name of the creator of the
module specification.

n SURI—An optional element containing a URI that points to a specifica-
tion document that describes the purpose and protocol, if any, defined by
the module.

n Vers—A required element containing information on the specification
version embodied by this Module Specification Advertisement.

n Desc—An optional element containing a description of the module
specification.

n Parm—An optional element containing parameters for the specification.
The format and meaning of these parameters is defined by the module’s
specification.

n jxta:PipeAdvertisement—An optional element containing a Pipe
Advertisement describing a pipe that can be used to send data to
the module.This element is actually the root element of the Pipe
Advertisement, not an element that contains a Pipe Advertisement.The

12_2344 Ch 10 5/14/02 11:44 AM Page 289

290 Chapter 10 Peer Groups and Services

module that implements this specification binds an input pipe to the pipe
identified by the Pipe Advertisement, allowing third parties to communi-
cate with the module.

n Proxy—An optional element containing the Module Specification ID of a
module that can be used to proxy communication with a module
defined by this module specification.This is not really used in the refer-
ence implementation, and its use in modules is discouraged.

n Auth—An optional element containing the Module Specification ID of a
module that provides authentication services for a module defined by this
module specification.

The implementation of the Module Specification Advertisement is split into
the abstract definition ModuleSpecAdvertisement, defined in net.jxta.protocol, and
the reference implementation ModuleSpecAdv, defined in net.jxta.impl.protocol.
These classes are shown in Figure 10.2.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleSpecAdvertisement
 (from net.jxta.protocol)

 ModuleSpecAdv
(from net.jxta.impl.protocol)

ModuleSpecAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getAuthSpecID() : net.jxta.platform.ModuleSpecID
getCreator() : java.lang.String
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleSpecID() : net.jxta.platform.ModuleSpecID
getName() : java.lang.String
getParam() : net.jxta.document.StructuredDocument
getPipeAdvertisement() : net.jxta.protocol.PipeAdvertisement
getProxySpecID() : net.jxta.platform.ModulespecID
getSpecURI() :java.lang.String
getVersion() : java.lang.String
setAuthSpecID(authld : net.jxta.platform.ModuleSpecID) : void
setCreator(creator : java.lang.String) : void
setDescription(description : java.lang.String) : void
setModuleSpecID(specld : net.jxta.platform.ModuleSpecID) : void
setName(name : java.lang.String) : void
setParam(param : net.jxta.document.StructureDocument) : void
setPipeAdvertisement(pipeAdv : net.jxta.protocol.PipeAdvertisement) : void
setProxySpecID(proxyld : net.jxta.platform.ModuleSpecID) : void
setSpecURI(specUri : java.lang.String) : void
setVersion(version : java.lang.String) : void

ModuleSpecAdv()
ModuleSpecAdv(root : net.jxta.document.Element)
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

Figure 10.2 The Module Specification Advertisement classes.

12_2344 Ch 10 5/14/02 11:44 AM Page 290

291Modules, Services, and Applications

For every Module Class Advertisement, there can be one or more different
Module Specification Advertisements, each specifying a different version of the
module. For example, if a new version of the Peer Discovery Protocol is
released, the module responsible for implementing the PDP in the reference
implementation will be associated with a new Module Specification
Advertisement that identifies the new version of the protocol that it
implements.

The Module Implementation Advertisement
The final advertisement responsible for defining a module, the Module
Implementation Advertisement, provides information on a particular imple-
mentation of a module specification, as shown in Listing 10.3.

Listing 10.3 The Module Implementation Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MIA>

<MSID> . . . </MSID>

<Comp> . . . </Comp>

<Code> . . . </Code>

<PURI> . . . </PURI>

<Prov> . . . </Prov>

<Desc> . . . </Desc>

<Parm> . . . </Parm>

</jxta:MIA>

The Module Implementation Advertisement provides information on a con-
crete implementation of a module specification:

n MSID—A required element containing the Module Specification ID iden-
tifying the module specification that this module is implementing.

n Comp—A required element containing compatibility information.The
format of the information contained by this element depends on the
possible deployment platforms for modules. Currently, the reference
implementation defines an XML format for the compatibility informa-
tion that details the JVM and binding. Future work to provide other
bindings will result in a variety of formats for this information.

n Code—A required element containing any information required to run
the code of the module implementation.The format of this information
is again defined by the deployment platform in which the module will
be running.Although this information is usually provided in addition to

12_2344 Ch 10 5/14/02 11:44 AM Page 291

292 Chapter 10 Peer Groups and Services

the package information provided by the PURI, the information in this
element could provide the code for the implementation, eliminating the
need for a PURI element.

n PURI—An optional element containing a URI that points to a package
that contains the code responsible for providing the module implementa-
tion. In the reference implementation, the Code element provides the fully
qualified class name for the module implementation, and the PURI ele-
ment points to the location of a JAR file containing the class described
by the Code element.Together, these elements can be used to download
the module implementation if it doesn’t exist locally and to start the
module.

n Prov—An optional element containing the name of the entity that is pro-
viding the module implementation specified by this advertisement’s Code
or PURI elements.

n Desc—An optional element containing a description of the module
implementation.

n Parm—An optional element containing parameters for the implementa-
tion.The format and meaning of these parameters is defined by the
module’s implementation.

The implementation of the Module Implementation Advertisement is
similarly split into the abstract definition ModuleImplAdvertisement, defined in
net.jxta.protocol, and the reference implementation ModuleImplAdv, defined
in net.jxta.impl.protocol.These classes are shown in Figure 10.3.

For every Module Specification Advertisement, there can be one or more
different Module Implementation Advertisements, each specifying a different
version of the module. Modules that are described by different module imple-
mentations that point to the same Module Specification Advertisement are
compatible.

For example, if you have a C++ module and Java module each implement-
ing the same version of the PDP, both will be associated with the same
Module Specification Advertisement. Each implementation will be associated
with different Module Implementation Advertisements that point to the same
Module Specification Advertisement.The implementation-specific details, such
as where to locate and download the module code, are specified in each mod-
ule’s Module Implementation Advertisement.

12_2344 Ch 10 5/15/02 11:15 AM Page 292

293Modules, Services, and Applications

Figure 10.3 The Module Implementation Advertisement classes.

The Module, Service, and Application Interfaces
The actual implementation of a module can take one of three forms: a mod-
ule, a service, or an application. For the most part, the functionality offered by
each is almost identical, as are the interfaces that describe them, as shown in
Figure 10.4.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleImplAdvertisement
 (from net.jxta.protocol)

 ModuleImplAdv
(from net.jxta.impl.protocol)

ModuleImplAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getCode() : java.lang.String
getCompat() : net.jxta.document.StructuredDocument
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleSpecID() : net.jxta.platform.ModuleSpecID
getParam() : net.jxta.document.StructuredDocument
getProvider() : java.lang.String
getUri() :java.lang.String
setCode(code : java.lang.String) : void
setCompat(compat : neet.jxta.document.Element) : void
setDescription(description : java.lang.String) : void
setModuleSpecID(specld : net.jxta.platform.ModuleSpecID) : void
setParam(param : net.jxta.document.Element) : void
setProvider(provider : java.lang.String) : void
setUri(packageUri : java.lang.String) : void

ModuleImplAdv()
ModuleImplAdv(root : net.jxta.document.Element)
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

12_2344 Ch 10 5/14/02 11:44 AM Page 293

294 Chapter 10 Peer Groups and Services

Figure 10.4 The Module, Service, and Application interfaces.

The Module and Application interfaces are identical, providing the init, startApp,
and stopApp methods.As their names suggest, these methods are used to initial-
ize, start, and stop the module. Probably the most important of these three is
the init method:

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)
throws PeerGroupException;

This method provides the module with a PeerGroup that it can use to obtain
services, such as the Discovery or Resolver services. In addition, an ID for the
module within the group is provided to allow the module to uniquely identify
itself within the peer group.This ID can be used by modules as the root of
their service name space, and it is usually used as the handler name that the
module registers with the Resolver service.The implAdv parameter is usually
the ModuleImplAdvertisement that was used to instantiate the module, so it con-
tains extra initialization parameters for the module in its Parm elements.

The Service interface adds only two additional methods:
getImplAdvertisement and getInterface.The getImplAdvertisement method pro-
vides the Module Implementation Advertisement describing the service.The
getInterface method returns another Service implementation that can be used
to handle the Service implementation by proxy and protect the usage of the
Service.

The Peer Group Lifecycle
To demonstrate the use of the JXTA reference implementation, the example
code in this book has used one of two mechanisms to invoke the JXTA plat-
form: command extensions running inside the JXTA Shell or a standalone
application that invokes the platform directly. Each mechanism provided a way
to access a PeerGroup object that allowed you to access services of a peer group.

<<Interface>>

Module

(from net.jxta.platform)

init(group : net.jxta.peergroup.PeerGroup, ID : net.jxta.id.ID, adv : net.jxta.document.Advertisement) : void

startApp(args : java.lang.String[]) : int

stopApp() : void

<<Interface>>

Application

(from net.jxta.platform)

init(group : net.jxta.peergroup.PeerGroup, ID : net.jxta.id.LD, adv : net.jxta.document.Advertisement) : void

startApp(args : java.lang.String[]) : int

stopApp() : void

<<Interface>>

Service

(from net.jxta.service)

getInterface() : net.jxta.service.Service

getImplAdvertisement() : net.jxta.document.Advertisement

12_2344 Ch 10 5/14/02 11:44 AM Page 294

295The Peer Group Lifecycle

In the case of the Shell, the examples started the platform using the
net.jxta.impl.peergroup.Boot class:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar net.jxta.impl.peergroup.Boot

When the example Shell command extension ran, a PeerGroup object was
obtained using the Shell’s environment variables, as shown in Listing 10.4.

Listing 10.4 Obtaining the PeerGroup Object in a Shell Command

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup aPeerGroup = (PeerGroup) theShellObject.getObject();

When running the JXTA platform as a standalone application, the calling
example applications have obtained a reference to a PeerGroup object using the
following snippet of code:

net.jxta.peergroup.PeerGroup peerGroup =
PeerGroupFactory.newNetPeerGroup();

Until now, no explanation has been given on why these mechanisms work or
what goes on behind the scenes when either of these mechanisms is invoked.
Each of these mechanisms is responsible for “bootstrapping” the JXTA plat-
form, thereby preparing the platform to be used to perform P2P networking.
This process revolves around instantiating two very special peer groups: the
World Peer Group and the Net Peer Group. In JXTA, the peer group
mechanism is implemented as a Service and therefore requires configuring the
appropriate Module Implementation Advertisement.After this advertisement
has been created, it is used to instantiate the Net Peer Group that allows the
peer to communicate with other peers on the network.

Creating the World Peer Group
The first thing that the JXTA platform requires when bootstrapping is a World
Peer Group, which is a peer group identified by a special Peer Group ID.The
World Peer Group defines the basic capabilities of the peer, such as the ser-
vices, endpoint protocol implementations, and applications that the peer will
make available on the network.

12_2344 Ch 10 5/14/02 11:44 AM Page 295

296 Chapter 10 Peer Groups and Services

Although each peer belongs to the World Peer Group, and the World Peer
Group defines the endpoint protocol implementations supported by the peer,
the World Peer Group itself can’t be used to perform P2P networking.The
World Peer Group is basically a template that can be used to either discover or
generate a Net Peer Group instance.The Net Peer Group is a common peer
group to peers in the network that allows all peers to communicate with each
other.

In the reference implementation, the creation of the World Peer
Group is managed by the net.jxta.impl.peergroup.Platform class.When
bootstrapping the JXTA platform using either the Boot class or the
PeerGroupFactory.newNetPeerGroup method, the Platform class is called to
generate a Peer Advertisement and instantiate the World Peer Group.
Note that the Platform class is simply a special implementation of PeerGroup
configured to handle the bootstrapping process.A different implementation
can be provided by changing the PlatformPeerGroupClassName property in the
config.properties file in the net.jxta.impl package.

The configuration information for the endpoint protocol implementations
and other services supported by the World Peer Group is extracted from a Peer
Advertisement used to configure the World Peer Group. In the reference
implementation, the Peer Advertisement is generated by the Configurator tool
based on configuration input provided by the user.The Peer Advertisement
uses the format given in Listing 10.5.

Listing 10.5 The Peer Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PA xmlns:jxta=”http://jxta.org”>

<PID> . . . </PID>

<GID> . . . </GID>

<Name> . . . </Name>

<Dbg> . . . </Dbg>

<Desc> . . . </Desc>

<Svc>

<MCID> . . . </MCID>

<Parm>

. . .

</Parm>

</Svc>

</jxta:PA>

12_2344 Ch 10 5/14/02 11:44 AM Page 296

297The Peer Group Lifecycle

The parameters of the Peer Advertisement describe the fundamental informa-
tion required for a remote peer to be capable of interacting with the peer:

n PID—A required element containing the Peer ID for the peer.The exact
format of the ID used by JXTA isn’t especially important for this discus-
sion.The only important thing to note about the Peer ID at this point is
that it incorporates the Peer Group ID in it. More information on the
format of the ID used by the reference implementation can be found in
the JXTA Protocols Specification.

n GID—An optional element containing the Peer Group ID of the peer
group to which the peer described by this advertisement belongs.

n Name—An optional element containing a simple name for the peer.
This string can be used in conjunction with the Discovery service to
attempt to discover a particular peer; however, multiple peers may use
the same Name. Only the Peer ID is guaranteed to uniquely identify a
particular peer.

n Dbg—An optional element describing the debugging message level
employed by the peer.This element is currently used only when config-
uring the peer while bootstrapping the platform. Currently accepted val-
ues for this element, from least explicit to most explicit, are error, warn,
info, and debug.

n Desc—An optional element containing a description of the peer.As with
the Name element, the contents of the Desc element are not necessarily
unique among peers.This string can be used to perform discovery, with
the same caveats as for the Name element.

n Svc—An optional element providing service configuration information.
Note that multiple Svc elements may appear in the Peer Advertisement,
each describing a different service.The format of the contents is unspeci-
fied by the Protocols Specification, and it is the responsibility of the
PeerGroup implementation managing the bootstrapping process to know
how to parse the Svc element’s contents.The format expected by the ref-
erence implementation’s Configurator class is a MCID element and a Parm
element, explained next.

n MCID—The Module Class ID of the service that this Svc element is
describing.

n Parm—The arbitrary parameters used to configure the service.The
Configurator class understands only a few parameter formats, depending
on the Module Class ID.The Svc parameters are mainly used to config-
ure the peer’s endpoint transports.Therefore, most parameters contain a
Transport Advertisement containing configuration for the endpoint pro-
tocol implementation specified by the MCID element.

12_2344 Ch 10 5/14/02 11:44 AM Page 297

298 Chapter 10 Peer Groups and Services

This configuration information is stored as a Peer Advertisement in a file
called PlatformConfig in the current directory when the JXTA platform is
started. Future attempts to bootstrap the platform from the same directory will
use the same PlatformConfig file to automatically configure the peer.

After finding or creating the Peer Advertisement, the Platform class is
responsible for generating a Peer Group Advertisement that will be used to
instantiate a World Peer Group.A Peer Group Advertisement is described using
the format in Listing 10.6.

Listing 10.6 The Peer Group Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PGA xmlns:jxta=”http://jxta.org”>

<GID> . . . </GID>

<MSID> . . . </MSID>

<Name> . . . </Name>

<Desc> . . . </Desc>

<Svc>

. . .

</Svc>

</jxta:PGA>

The elements of the Peer Group Advertisement provide the following
information:

n GID—A required element containing a Peer Group ID that uniquely
identifies this group. For the World Peer Group, this ID is the same on
all peers.

n MSID—A required element containing a Module Specification ID that
identifies the module providing the implementation of the peer group
module on the peer. Modules will be discussed in the section “Creating
the Net Peer Group,” later in this chapter.

n Name—An optional element containing a simple name for the peer group.
This string is not necessarily unique.

n Desc—An optional element containing a description of the peer group.
The Desc and Name elements, like their counterparts in the Peer
Advertisement, can be used to discover a Peer Group Advertisement.

n Svc—An optional element describing a service provided by the peer
group. Note that multiple Svc elements may appear in the Peer Group
Advertisement, each describing a different service.The format of the
contents of the Svc is again dependent on the PeerGroup implementation.

12_2344 Ch 10 5/14/02 11:44 AM Page 298

299The Peer Group Lifecycle

As part of generating Peer Group Advertisement for the World Peer Group,
the Platform object creates a Module Implementation Advertisement for the
group.The Module Implementation Advertisement for the group describes the
services offered by the peer group.

The Module Implementation Advertisement is populated with a set of
hard-coded advertisements for the core platform services: the Discovery,
Resolver, Rendezvous, Peer Info, and Endpoint services. In addition, elements
containing advertisements for the endpoint protocol implementations are
inserted into the advertisement.When the Platform instantiates the World Peer
Group using the generated Peer Group Advertisement, the services and proto-
cols described by the Module Implementation Advertisement are loaded and
initialized by the Platform.

The sequence of events leading to the creation of a World Peer Group
is triggered when the Platform is invoked by either the Boot class or
PeerGroupFactory.newNetPeerGroup(). Each of these methods invokes the Platform
class and uses the hard-coded set of services to instantiate a World Peer Group.
In some applications, it might not be desirable to load all the services hard-
coded into the Platform class. In this case, you can create a Peer Group
Advertisement yourself, use it to create a PeerGroup instance, and pass the
resulting PeerGroup as a parameter to the other version of
PeerGroupFactory.newNetPeerGroup:

public static PeerGroup newNetPeerGroup(PeerGroup pg)
throws PeerGroupException

This version of newNetPeerGroup bypasses the creation of a World Peer Group
using the Platform class, using the provided PeerGroup instance as the World
Peer Group instead, and proceeds directly to the creation of the Net Peer
Group.

Creating the Net Peer Group
After the World Peer Group has been created, the peer needs to instantiate the
Net Peer Group.The Net Peer Group can describe additional characteristics
about a peer, but most often it is simply a duplicate of the World Peer Group.
Although the Net Peer Group can be discovered, the majority of peers using
the reference implementation rely on the version of the Net Peer Group’s Peer
Advertisement hard-coded into the World Peer Group advertisement produced
by the Platform.

So what exactly is the Net Peer Group? Basically, the Net Peer Group is the
peer’s starting point on the P2P network.All peers belong to a Net Peer
Group, but not necessarily the same Net Peer Group. For example, an enter-
prise application might define its own Net Peer Group that peers instantiate

12_2344 Ch 10 5/14/02 11:44 AM Page 299

300 Chapter 10 Peer Groups and Services

during the bootstrapping process.All members of the enterprise would be
capable of using this Net Peer Group to communicate, but other JXTA
peers wouldn’t be capable of communicating with this network by default.

The World Peer Group is different from the Net Peer Group in that it is
really only a configuration mechanism.The Net Peer Group is the peer group
used to provide actual connectivity to the P2P network.

To generate the Net Peer Group, the Platform class hard-codes the
StartNetPeerGroup application in net.jxta.impl.peergroup into the World Peer
Group’s Module Implementation Advertisement.This application is invoked by
the platform and causes the StartNetPeerGroup class to discover or build the Net
Peer Group’s Peer Advertisement.Although the StartNetPeerGroup does provide
a way for a user to choose to discover the Net Peer Group, this functionality
is fairly hidden from the user. Usually, the StartNetPeerGroup builds a Peer
Group Advertisement from the parent World Peer Group using a default
Peer Group ID for the Net Peer Group.

After the Net Peer Group is instantiated, the services described by the peer
group’s Module Implementation Advertisement are started. In the standard Net
Peer Group, this forces the core services to begin providing the Discovery,
Resolver, Rendezvous, Peer Info, and Endpoint services.After these services
are started, the peer is connected to the network and ready to interact with
other peers. New peer groups can be created to segment the network space,
using the Net Peer Group as a template for the set of services offered by the
peer group.

In summary, the process of bootstrapping instantiates the World Peer Group,
which comprises a set of services that are usually hard-coded into the JXTA
platform implementation.After the World Peer Group has been instantiated,
the peer uses the services of the World Peer Group to discover or generate a
Net Peer Group instance.The Net Peer Group instance provides access to the
P2P network and a set of core services used by the peer.After booting into
the Net Peer Group, the peer can use the services offered by the Net Peer
Group.The peer may also elect to create other peer groups with extra capabil-
ities by using the Net Peer Group as a template for the set of core services
offered by the peer group.

Working with Peer Groups
After the World and Net Peer Groups have been created, peers can communi-
cate with each other using the core JXTA protocols. However, the Net Peer
Group provides a common space where everyone in the P2P network can
interact, a property that might not be suitable to all P2P applications.To allow

12_2344 Ch 10 5/14/02 11:44 AM Page 300

301Working with Peer Groups

peers to group themselves in some meaningful way, peers can form their
own peer groups, each providing its own set of services to members of the
peer group.

Working with peer groups requires use of the PeerGroup interface, shown in
Figure 10.5, defined in net.jxta.peergroup, and its implementations.The
StdPeerGroup class defined in net.jxta.impl.peergroup provides the PeerGroup
implementation used throughout the reference implementation.

 <<Interface>>
 PeerGroup
 (from net.jxta.peergroup)

Here : int = 0
FromParent : int = 1
Both : int = 2
DEFAULT_LIFETIME : long =1471228928
DEFAULT_EXPIRATION : long = 1209600000

getLoader() : net.jxta.platform.JxtaLoader
isRendezvous() : boolean
getPeerGroupAdvertisement() : net.jxta.protocol.PeerGroupAdvertisement
getPeerAdvertisement() : net.jxta.protocol.PeerAdvertisement
lookupService(id : net.jxta.id.ID) : net.jxta.service.Service
compatible(compat : net.jxta.document.Element) : boolean
loadModule(assignedID : net.jxta.id.ID, impl : net.jxta.document.Advertisement) : net.jxta.platform.Module
loadModule(assignedID0 : net.jxta.id.ID, specID : net.jxta.platform.ModuleSpecID, where : int) net.jxta.platform.Module
publishGroup(name : java.lang.String, description : java.lang.String) : void
newGroup(pgAdv : net.jxta.document.Advertisement) : net.jxta.peergroup.PeerGroup
newGroup(gid : net.jxta.peergroup.PeerGroupID, impl L net.jxta.document.Advertisement, name : java.lang.String, description : java.lang.String) : net.jxta.peergroup.PeerGroup
newGroup(gid : net.jxta.peergroup.PeerGroupID) : net.jxta.peergroup.PeerGroup
getRendezVousService() : net.jxta.rendezvous.RendezVousService
getEndpointService() : net.jxta.endpoint.EndpointService
getResolverService() : net.jxta.resolver.ResolverService
getDiscoveryService() : net.jxta.discovery.DiscoveryService
getPeerInfoService() : net.jxta.peer.PeerInfoService
getMembershipService() : net.jxta.membership.MembershipService
getPipeService() : net.jxta.pipe.PipeService
getPeerGroupID() : net.jxta.peergroup.PeerGroupID
getPeerID() : net.jxta.peer.PeerID
getPeerGroupName() : java.lang.String
getPeerName() : java.lang.String
getConfigAdvertisement() : net.jxta.document.Advertisement
getAllPurposePeerGroupImplAdvertisement() : net.jxta.protocol.ModuleImplAdvertisement

 <<Interface>>
 RefPeerGroup
 (from net.jxta.impl.peergroup)

getParentGroup()

 GenericPeerGroup
(from net.jxta.impl.peergroup)

 StdPeerGroup
(from net.jxta.impl.peergroup)

Figure 10.5 The PeerGroup interface and implementation classes.

The PeerGroup interface defines the standard Module Class IDs for the core
JXTA services and Module Specification IDs for the reference implementa-
tions of those core services.

12_2344 Ch 10 5/14/02 11:44 AM Page 301

302 Chapter 10 Peer Groups and Services

Creating a Peer Group
Creating a peer group isn’t much different from using any of the other services
that a peer group provides.To create a peer group, you only need to call one
of the newGroup methods, shown in Listing 10.7, provided by the PeerGroup
interface. Each of the different versions has a slightly different set of circum-
stances under which it should be invoked.

Listing 10.7 Peer Group Creation Methods

public PeerGroup newGroup(Advertisement pgAdv)

throws PeerGroupException;newGroup(Advertisement);

public PeerGroup newGroup(PeerGroupID gid)

throws PeerGroupException;

public PeerGroup newGroup(PeerGroupID gid, Advertisement impl,

String name, String description)

throws PeerGroupException;

The first version of newGroup uses a given Peer Group Advertisement to instan-
tiate the peer group.This version is used to create a peer group using an
existing Module Implementation Advertisement.

The second version of newGroup creates a new peer group using the given
Peer Group ID.The version assumes that a Peer Group Advertisement with the
corresponding Peer Group ID has already been published.

The final version of newGroup creates a new peer group using the given Peer
Group ID, Module Implementation Advertisement, name, and description. If
the given PeerGroupID is null, this method creates a new Peer Group ID for the
new group.

The example in Listing 10.8 shows how to create a new peer group using
the Net Peer Group and the newGroup method.This version simply makes a
copy of the Net Peer Group’s Module Implementation Advertisement and uses
it to instantiate the new group.The newGroup method also publishes the Peer
Group Advertisement for the new peer group in the parent peer group.The
parent peer group is considered to be the peer group used to create the group
through the call to newGroup.

Listing 10.8 Source Code for CreatePeerGroup.java

package com.newriders.jxta.chapter10;

import java.util.Enumeration;

import net.jxta.discovery.DiscoveryService;

import net.jxta.exception.PeerGroupException;

12_2344 Ch 10 5/14/02 11:44 AM Page 302

303Working with Peer Groups

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.PeerGroupAdvertisement;

/**

* Create a new peer group and publish it.

*/

public class CreatePeerGroup

{

/**

* The Net Peer Group for the application.

*/

private PeerGroup netPeerGroup = null;

/**

* Creates a new peer group using the Net Peer Group’s

* Module Implementation Advertisement as a template.

*

* @exception Exception if an error occurs retrieving the

* copy of the Net Peer Group’s Module

* Implementation Advertisement.

*/

public void createPeerGroup() throws Exception

{

// The name and description for the peer group.

String name = “CreatePeerGroup”;

String description =

“An example peer group to test peer group creation”;

// Obtain a preformed ModuleImplAdvertisement to

// use when creating the new peer group.

ModuleImplAdvertisement implAdv =

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

// Create the Peer Group ID.

PeerGroupID groupID = IDFactory.newPeerGroupID();

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 303

304 Chapter 10 Peer Groups and Services

// Create the new group using the Peer Group ID,

// advertisement, name, and description.

PeerGroup newGroup = netPeerGroup.newGroup(

groupID, implAdv, name, description);

// Need to publish the group remotely only because

// newGroup() handles publishing to the local peer.

PeerGroupAdvertisement groupAdv =

newGroup.getPeerGroupAdvertisement();

DiscoveryService discovery =

netPeerGroup.getDiscoveryService();

discovery.remotePublish(groupAdv,

DiscoveryService.GROUP);

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can’t be started.

*/

public void initializeJXTA() throws PeerGroupException

{

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Runs the application.

*

* @param args the command-line arguments passed to

* the application.

*/

public static void main(String[] args)

{

CreatePeerGroup creator = new CreatePeerGroup();

try

{

// Initialize the JXTA platform.

creator.initializeJXTA();

// Create the group.

creator.createPeerGroup();

Listing 10.8 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 304

305Working with Peer Groups

// Exit.

System.exit(0);

}

catch (Exception e)

{

System.out.println(“Error starting JXTA platform: “

+ e);

System.exit(1);

}

}

}

The CreatePeerGroup example doesn’t really do much of note, but it provides
the first step toward creating a new peer group that provides a new service.

Joining a Peer Group
Instantiating a peer group from an advertisement is only the first step toward
being able to interact with members of the peer group. Before a peer can
interact with the group, it needs to join the peer group, a process that allows
the peer to establish its identity within the peer group.This process allows
peer groups to permit only authorized peers to join and interact with the
peer group.

Each peer group has a membership policy that governs who can join the
peer group.When a peer instantiates a peer group, the peer group’s member-
ship policy establishes a temporary identity for the peer, similar to the
“nobody” identity in UNIX systems.This temporary identity exists for the
sole purpose of allowing the peer to establish its identity by interacting with
the membership policy.This interaction can involve the exchange of login
information, exchange of public keys, or any other mechanism that a peer
group’s membership implementation uses to establish a peer’s identity.

After a peer has successfully established its identity within the peer group,
the membership policy provides the user with credentials.These credentials
can then be used to provide verification of identity to other peers in the
group when interacting with services offered by the peer group.

The membership policy for a peer group is implemented as the
Membership service.The Membership service in the reference implementation
is defined by MembershipService, shown in Figure 10.6, which is part of the
net.jxta.membership package.

12_2344 Ch 10 5/14/02 11:44 AM Page 305

306 Chapter 10 Peer Groups and Services

Figure 10.6 The Membership service and related classes.

In addition to the MembershipService class and its implementations, the reference
implementation defines a Credential interface and an implementation called
AuthenticationCredential.These classes, defined in net.jxta.credential, are used
in conjunction with the MembershipService class to represent an identity and the
access level associated with that identity.

Two steps are involved in establishing an identity within a peer group using
the peer group’s MembershipService instance:

1. Applying for membership. This involves calling the peer group’s
MembershipService’s apply method.The apply method takes an
AuthenticationCredential argument, which specifies the authentication
method and desired identity.The method returns an Authenticator imple-
mentation that the caller can use to authenticate with the peer group.

2. Joining the group.The peer must provide the Authenticator implemen-
tation with the information that it requires to authenticate.When the
peer has completed authentication using the Authenticator, the
Authenticator’s isReadyForJoin method returns true.The peer now calls
the MembershipService’s join method, providing the Authenticator as an
argument.The join method returns a Credential object that the peer
can use to prove its identity to peer group services.

 MembershipService
 (from net.jxta.membership)

MembershipService()
getName() : java.lang.String
getInterface() : net.jxta.service.Service
apply(application : net.jxta.credential.AuthenticationCredential) : net.jxta.membership.Authenticator
join(authenticated : net.jxta.membership.Authenticator) : net.jxta.credential.Credential
resign() : void
getCurrentCredentials() : java.util.Enumeration
getAuthCredentials() : java.util.Enumeration
makeCredential(element : net.jxta.document.Element) : net.jxta.credential.Credential
getImplAdvertisement() net.jxta.document.Advertisement
stopApp() : void
startApp(args : java.lang.String[]) : int
init(group : net.jxta.peergroup.PeerGroup, assignedID : net.jxta.id.ID, adv : net.jxta.document.Advertisement) : void

 <<Interface>>
 Authenticator
 (from net.jxta.membership)

getMethodName() : java.lang.String
getAuthenticationCredential() : net.jxta.credential.AuthenticationCredential
getSourceService() : net.jxta.membership.MembershipService
isReadyForJoin() : boolean

 <<Interface>>

getSourceService() : net.jxta.membership.MembershipService
getPeerGroupID() : nte.jxta.id.ID
getPeerID() : net.jxta.id.ID
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.StructuredDoc

 AuthenticationCredential
 (from net.jxta.credential)

AuthenticationCredential(peergroup : net.jxta.peergroup.PeerGroup.method : java.lang.String, identity : net.jxta.document.Element)
getSourceService() : net.jxta.membership.MembershipService
getPeerGroupID() : net.jxta.id.ID
getPeerID() : net.jxta.id.ID
getMethod() : java.lang.String
getIdentityInfo() : net.jxta.document.Element
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.StructuredDocument

authenticationMethod : java.lang.String

 Credential
(from net.jxta.credential)

12_2344 Ch 10 5/14/02 11:44 AM Page 306

307Working with Peer Groups

When applying for membership, the peer making the request must know the
implementation of Authenticator to interact with the Authenticator.This is
required because the Authenticator interface has no mechanism for the peer to
interact with it. Using only the Authenticator interface, a peer can only deter-
mine whether it has completed the authentication process successfully and
then proceed with joining the peer group.

The reference implementation currently provides two example
MembershipService implementations in the net.jxta.impl.membership package:
NullMembershipService and PasswdMembershipService. NullMembershipService pro-
vides a MembershipService that offers no real authentication and simply assigns
whatever identity the peer requests. PasswdMembershipService provides a simple
authentication based on login and “encrypted” passwords provided in the para-
meters in the advertisement for the Membership service.The “encryption”
consists of a simple substitution cipher and thus is not practical for securing a
real peer group.

Leaving a Peer Group
To leave a peer group, the peer simply calls the resign method on the
MembershipService implementation for the peer group.This removes all authen-
tication credentials from the MembershipService and reverts the peer to the
“nobody” identity within the peer group.

The Current Membership Implementation
Unfortunately, the current implementations of MembershipService aren’t espe-
cially useful.To provide proper authentication, a developer must develop a
MembershipService of his own to manage the creation and validation of authen-
tication credentials. In addition, the developer must provide a mechanism in
his service to use the credentials and validate the credentials passed by other
peers in requests to the service.

Although the Protocol Specification outlines the concept of an Access
service whose responsibility it is to verify credentials passed with requests, no
implementation is provided in the reference implementation.The Resolver
service’s Resolver Query and Response Messages support a Credential
element, but the contents of the element are never verified. For now, it
appears that it is the responsibility of a developer to define his own Access
service implementation and use it to verify credentials passed to his custom
peer group services.

As such, a developer currently needs only to instantiate a peer group and
can skip the steps of applying for membership and joining the peer group.This
will undoubtedly change in the future, but for now, you can safely ignore the
Membership service.

12_2344 Ch 10 5/14/02 11:44 AM Page 307

308 Chapter 10 Peer Groups and Services

Destroying a Peer Group
Many people ask,“How do I destroy a peer group that I created?”
Unfortunately, there is no way to explicitly destroy a peer group after it has
been created and its advertisement has been published.Although the PeerGroup
instance on a particular peer might be destroyed, other peers on the network
can still instantiate a PeerGroup object for the group as long as they can find the
Peer Group Advertisement for the group.After the Peer Group Advertisement
has been published, the peer group exists in the network until the advertise-
ment expires.

If the Peer Group Advertisement was published to other peers using the
default lifetime, the advertisement is removed from other peers’ caches after
two hours. However, if the Peer Group Advertisement was published locally
using the default lifetime, it will not expire for a year.

One solution to this problem is to publish Peer Group Advertisements using
a short lifespan.That way, the peer group will expire quickly if the advertise-
ment isn’t being used. However, doing this requires not using the
PeerGroup.publishGroup method or the PeerGroup.newGroup method. By default,
the PeerGroup reference implementation’s newGroup method will call publishGroup
to publish the Peer Group Advertisement.To publish the Peer Group
Advertisement with a nondefault expiration or lifespan, you must manually
create the PeerGroup instance and publish the Peer Group Advertisement using
the following steps:

1. Create the PeerGroupAdvertisement instance using the
AdvertisementFactory.newAdvertisement method, passing in the String
obtained by calling the static PeerGroupAdvertisement.getAdvertisementType
method.

2. Populate the fields of the PeerGroupAdvertisement instance, making sure to
generate a new Peer Group ID using a call to IDFactory’s newPeerGroupID
method.

3. Load the PeerGroup instance from the advertisement by calling the parent
PeerGroup’s loadModule method, passing in the Peer Group ID from the
Peer Group Advertisement and the Module Implementation
Advertisement for the new Peer Group.

4. Publish the Peer Group Advertisement locally and remotely using the
parent PeerGroup instance’s DiscoveryService instance.This enables you to
set the expiration and lifespan for the Peer Group Advertisement.

12_2344 Ch 10 5/14/02 11:44 AM Page 308

309Creating a Service

Creating a Service
Creating a service is a fairly simple task: Create a class that implements the
Service interface. In addition to creating the Service implementation itself,
other parts make up a good service design.A good service design separates,
abstracts, and encapsulates the elements of the implementation in an object-
oriented fashion.

The example service presented in the following sections extends one of the
Resolver service examples presented in Chapter 5,“The Peer Resolver
Protocol.”The example given in that chapter showed how to use the Resolver
service to create a QueryHandler that can handle a custom request that poses a
basic math problem:What is the value of the given base raised to the given
power? This example extends the basic functionality provided by that
QueryHandler example and builds a full-fledged service module.

The Example Service Messages
To simplify the implementation of the example service, the example in Listing
10.9 reuses the ExampleQueryMsg and ExampleResponseMsg classes created in
Chapter 5.These classes provide the functionality required to parse and format
the XML used by the QueryHandler to send a query and receive a response.

Listing 10.9 Source Code for ExampleQueryMsg.java

package com.newriders.jxta.chapter10;

import java.io.InputStream;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

* An example query message, which will be wrapped by a

* Resolver query message to send the query to other peers.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 309

310 Chapter 10 Peer Groups and Services

* The query essentially asks a simple math question: “What

* is the value of (base) raised to (power)?”

*/

public class ExampleQueryMsg

{

/**

* The base for query.

*/

private double base = 0.0;

/**

* The power for the query.

*/

private double power = 0.0;

/**

* Creates a query object using the given base and power.

*

* @param aBase the base for the query.

* @param aPower the power for the query.

*/

public ExampleQueryMsg(double aBase, double aPower)

{

super();

this.base = aBase;

this.power = aPower;

}

/**

* Creates a query object by parsing the given input stream.

*

* @param stream the InputStream source of the

* query data.

* @exception Exception if the message can’t be parsed

* from the stream.

*/

public ExampleQueryMsg(InputStream stream) throws Exception

{

StructuredTextDocument document = (StructuredTextDocument)

Listing 10.9 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 310

311Creating a Service

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the base for the query.

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the query.

*

* @param asMimeType the desired MIME type

* representation for the query.

* @return a Document form of the query in the

* specified MIME representation.

* @exception Exception if the document can’t be created.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 311

312 Chapter 10 Peer Groups and Services

*/

public Document getDocument(MimeMediaType asMimeType)

throws Exception

{

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleQuery”);

Element element;

element = document.createElement(“base”,

Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

return document;

}

/**

* Returns the power for the query.

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the query.

*

* @return the XML String representing this query.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc =

Listing 10.9 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 312

313Creating a Service

(StructuredTextDocument) getDocument(

new MimeMediaType(“text/xml”));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

ExampleQueryMsg is a simple class that wraps a base and power value for the
exponentiation as an XML query that can be sent to another peer.The
response to an ExampleQueryMsg, ExampleResponseMsg, contains the base and power
values sent by the query, plus the result of the exponentiation.The source code
for ExampleResponseMsg is shown in Listing 10.10.

Listing 10.10 Source Code for ExampleResponseMsg.java

package com.newriders.jxta.chapter10;

import java.io.InputStream;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

* An example query response, which will be wrapped by a Resolver response

* message to send the response to the query. The response contains the

* answer to the simple math question posed by the query.

*/

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 313

314 Chapter 10 Peer Groups and Services

public class ExampleResponseMsg

{

/**

* The base from the original query.

*/

private double base = 0.0;

/**

* The power from the original query.

*/

private double power = 0.0;

/**

* The answer value for the response.

*/

private double answer = 0;

/**

* Creates a response object using the given answer value.

*

* @param anAnswer the answer for the response.

*/

public ExampleResponseMsg(double aBase, double aPower, double anAnswer)

{

this.base = aBase;

this.power = aPower;

this.answer = anAnswer;

}

/**

* Creates a response object by parsing the given input stream.

*

* @param stream the InputStream source of the response data.

* @exception Exception if the message can’t be parsed from the

* stream.

*/

public ExampleResponseMsg(InputStream stream) throws Exception

{

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

Listing 10.10 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 314

315Creating a Service

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“answer”))

{

answer = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the answer for the response.

*

* @return the answer value for the response.

*/

public double getAnswer()

{

return answer;

}

/**

* Returns the base for the query.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 315

316 Chapter 10 Peer Groups and Services

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the response.

*

* @param asMimeType the desired MIME type representation for

* the response.

* @return a Document form of the response in the specified

* MIME representation.

* @exception Exception if the document can’t be created.

*/

public Document getDocument(MimeMediaType asMimeType) throws Exception

{

Element element;

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleResponse”);

element = document.createElement(“base”,

Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

element = document.createElement(“answer”, (

new Double(getAnswer()).toString()));

document.appendChild(element);

return document;

}

/**

* Returns the power for the query.

Listing 10.10 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 316

317Creating a Service

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the response.

*

* @return the XML String representing this response.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc = (StructuredTextDocument)

getDocument(new MimeMediaType(“text/xml”));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

The XML produced by these two classes, as well as the reasoning for encapsu-
lating the classes, can be found in the original example in Chapter 5.

Creating a Listener Interface
The services throughout this book have employed listener objects to provide
an elegant way for third-party developers to receive notification of arriving
messages.This is a simple feature that the example service can add without too
much difficulty.

12_2344 Ch 10 5/14/02 11:44 AM Page 317

318 Chapter 10 Peer Groups and Services

To provide notifications, the service needs an interface for the listener
objects.The code in Listing 10.11 provides a simple interface that the
listener objects can implement to receive notification of a newly arrived
ExampleResponseMsg.

Listing 10.11 Source Code for ExampleServiceListener.java

package com.newriders.jxta.chapter10;

/**

* An interface to encapsulate an object that listens for notification

* from the ExampleService of newly arrived ExampleResponseMsg messages.

*/

public interface ExampleServiceListener

{

/**

* Process the newly arrived ExampleResponseMsg message.

*

* @param answer the object encapsulating the notification event.

*/

public void processAnswer(ExampleServiceEvent answer);

}

The ExampleListener interface defines only a single method, processAnswer, that
the service calls to notify the listener.Although it is perhaps a bit unnecessary
for this simple service, the processAnswer method takes an instance of the
ExampleServiceEvent class, shown in Listing 10.12, as a parameter.

Listing 10.12 Source Code for ExampleServiceEvent.java

package com.newriders.jxta.chapter10;

import java.util.EventObject;

/**

* An object to encapsulate the event signaling the arrival of a

* new ExampleResponseMsg at the ExampleService.

*/

public class ExampleServiceEvent extends EventObject

{

/**

* The response object that triggered this event.

12_2344 Ch 10 5/14/02 11:44 AM Page 318

319Creating a Service

*/

private ExampleResponseMsg response = null;

/**

* Creates a new event object from the given source and

* message object.

*

* @param source the ExampleService source of the event.

* @param response the newly arrived ExampleResponseMsg message.

*/

public ExampleServiceEvent(Object source, ExampleResponseMsg response)

{

super(source);

this.response = response;

}

/**

* Returns the response that triggered this event.

*

* @return the newly arrived response message.

*/

public ExampleResponseMsg getResponse()

{

return response;

}

}

The ExampleServiceEvent serves only to wrap the arriving ExampleResponseMsg,
which is perhaps overkill for such a simple service. But in a more elaborate
service, the event object could provide other valuable information. For exam-
ple, a more sophisticated service might require information about the exact
time of the message’s arrival, the endpoint protocol implementation used to
receive the message, or the source of the response.All of this information,
which is not a part of the message contents, could be added to the event
object and thereby provided to the listener in addition to the received
message itself.

12_2344 Ch 10 5/14/02 11:44 AM Page 319

320 Chapter 10 Peer Groups and Services

Creating the Example Service Interface
Although the Service interface could be directly implemented by the example
service’s implementation class, it is better to separate the definition of the ser-
vice from its implementation. By defining an interface for the example service,
a third-party developer can define a different implementation that can be used
transparently.

For the example service, only three pieces of functionality are required:
n The capability to register an ExampleServiceListener object with the ser-

vice, allowing the listener to be notified of incoming messages
n The capability to send an ExampleQueryMsg to peers in the group without

formulating the ExampleQueryMsg manually
n The capability to unregister an ExampleServiceListener object from the

service, thus preventing the listener from receiving further message
arrival notifications

The ExampleService interface shown in Listing 10.13 provides all of this func-
tionality in its methods.

Listing 10.13 Source Code for ExampleService.java

package com.newriders.jxta.chapter10;

import net.jxta.service.Service;

/**

* An interface for the ExampleService. This interface defines the

* operations that a developer can expect to use to manipulate the

* ExampleService regardless of which underlying implementation of

* the service is being used.

*/

public interface ExampleService extends Service

{

/**

* Add a listener object to the service. When new ExampleResponseMsg

* responses arrive, the service will notify each registered listener.

*

* @param listener the listener object to register with the service.

*/

public void addListener(ExampleServiceListener listener);

12_2344 Ch 10 5/14/02 11:44 AM Page 320

321Creating a Service

/**

* Send a query to the network to determine the value of the given

* base raised to the given power.

*

* @param base the base for the exponentiation operation.

* @param power the exponent for the exponentiation operation.

*/

public void findAnswer(double base, double power);

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new ExampleResponseMsg

* response arrives.

*

* @param listener the listener object to unregister.

*/

public void removeListener(ExampleServiceListener listener);

}

Notice that the interface doesn’t implement the Service interface.This respon-
sibility is left to the implementation of the ExampleService interface.

The ExampleService Implementation
The ExampleService implementation shown in Listing 10.14 provides the actual
functionality provided by the service. It is responsible for registering with the
Resolver service to accept queries from peers and managing the set of regis-
tered listeners.

Listing 10.14 Source Code for ExampleServiceImpl.java

package com.newriders.jxta.chapter10;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.util.Vector;

import net.jxta.document.Advertisement;

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.NoResponseException;

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 321

322 Chapter 10 Peer Groups and Services

import net.jxta.exception.DiscardQueryException;

import net.jxta.exception.ResendQueryException;

import net.jxta.id.ID;

import net.jxta.impl.protocol.ResolverQuery;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.ResolverQueryMsg;

import net.jxta.protocol.ResolverResponseMsg;

import net.jxta.resolver.QueryHandler;

import net.jxta.resolver.ResolverService;

import net.jxta.service.Service;

/**

* The implementation of the ExampleService interface. This service

* builds on top of the Resolver service to provide the query

* functionality.

*/

public class ExampleServiceImpl implements ExampleService, QueryHandler

{

/**

* The Module Implementation advertisement for this service.

*/

private Advertisement implAdvertisement = null;

/**

* The handler name used to register the Resolver handler.

*/

private String handlerName = null;

/**

* The set of listener objects registered with the service.

*/

private Vector registeredListeners = new Vector();

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 322

323Creating a Service

/**

* The peer group to which the service belongs.

*/

private PeerGroup myPeerGroup = null;

/**

* The Resolver service used to send response messages.

*/

private ResolverService resolver = null;

/**

* A unique query ID that can be used to track a query.

*/

private int queryID = 0;

/**

* Add a listener object to the service. When new ExampleResponseMsg

* responses arrive, the service will notify each registered listener.

* This method is synchronized to prevent multiple threads from

* altering the set of registered listeners simultaneously.

*

* @param listener the listener object to register with the service.

*/

public synchronized void addListener(ExampleServiceListener listener)

{

registeredListeners.addElement(listener);

}

/**

* Send a query to the network to determine the value of the given

* base raised to the given power.

*

* @param base the base for the exponentiation operation.

* @param power the exponent for the exponentiation operation.

*/

public void findAnswer(double base, double power)

{

// Make sure the service has been started.

if (resolver != null)

{

// Create the query object using the given base and power.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 323

324 Chapter 10 Peer Groups and Services

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);

String localPeerId = myPeerGroup.getPeerID().toString();

// Wrap the query in a Resolver Query Message.

ResolverQuery query = new ResolverQuery(handlerName,

“JXTACRED”, localPeerId, equery.toString(), queryID++);

// Send the query using the Resolver service.

resolver.sendQuery(null, query);

}

}

/**

* Returns the advertisement for this service. In this case, this is

* the ModuleImplAdvertisement passed in when the service was

* initialized.

*

* @return the advertisement describing this service.

*/

public Advertisement getImplAdvertisement()

{

return implAdvertisement;

}

/**

* Returns an interface used to protect this service.

*

* @return the wrapper object to use to manipulate this service.

*/

public Service getInterface()

{

// We don’t really need to provide an interface object to protect

// this service, so this method simply returns the service itself.

return this;

}

/**

* Initialize the service.

*

* @param group the PeerGroup containing this service.

* @param assignedID the identifier for this service.

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 324

325Creating a Service

* @param implAdv the advertisement specifying this service.

* @exception PeerGroupException is not thrown ever by this

* implementation.

*/

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)

throws PeerGroupException

{

// Save the module’s implementation advertisement.

implAdvertisement = (ModuleImplAdvertisement) implAdv;

// Use the assigned ID as the Resolver handler name.

handlerName = assignedID.toString();

// Save a reference to the group of which that this service

// is a part.

myPeerGroup = group;

}

/**

* Processes the Resolver query message and returns a response.

*

* @param query the message to be processed.

* @exception IOException if the query can’t be read.

*/

public ResolverResponseMsg processQuery(ResolverQueryMsg query)

throws IOException, NoResponseException, DiscardQueryException,

ResendQueryException

{

ResolverResponse response;

ExampleQueryMsg eq;

double answer = 0.0;

try

{

// Extract the query message.

eq = new ExampleQueryMsg(

new ByteArrayInputStream((query.getQuery()).getBytes()));

}

catch (Exception e)

{

throw new IOException();

}

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 325

326 Chapter 10 Peer Groups and Services

// Perform the calculation.

answer = Math.pow(eq.getBase(), eq.getPower());

// Create the response message.

ExampleResponseMsg er = new ExampleResponseMsg(

eq.getBase(), eq.getPower(), answer);

// Wrap the response message in a Resolver Response Message.

response = new ResolverResponse(handlerName, “JXTACRED”,

query.getQueryId(), er.toString());

// Return the message so that the Resolver service can handle

// sending it.

return response;

}

/**

* Process a Resolver Response Message.

*

* @param response a response message to be processed.

*/

public void processResponse(ResolverResponseMsg response)

{

ExampleResponseMsg er;

ExampleServiceEvent event;

try

{

// Extract the message from the Resolver response.

er = new ExampleResponseMsg(

new ByteArrayInputStream(

(response.getResponse()).getBytes()));

// Create an event to send to the listeners.

event = new ExampleServiceEvent(this, er);

// Notify each of the registered listeners.

if (registeredListeners.size() > 0)

{

ExampleServiceListener listener = null;

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 326

327Creating a Service

for (int i = 0; i < registeredListeners.size(); i++)

{

listener = (ExampleServiceListener)

registeredListeners.elementAt(i);

listener.processAnswer(event);

}

}

}

catch (Exception e)

{

// This is not the right type of response message, or

// the message is improperly formed. Ignore the exception;

// do nothing with the message.

}

}

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new ExampleResponseMsg

* response arrives.

*

* @param listener the listener object to unregister.

*/

public synchronized void removeListener(ExampleServiceListener listener)

{

registeredListeners.removeElement(listener);

}

/**

* Start the service.

*

* @param args the arguments to the service. Not used.

* @return 0 to indicate the service started.

*/

public int startApp(String[] args)

{

// Now that the service is being started, set the ResolverService

// object to use to handle queries and responses.

resolver = myPeerGroup.getResolverService();

// Add ourselves as a listener using the unique constructed

// handler name.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 327

328 Chapter 10 Peer Groups and Services

resolver.registerHandler(handlerName, this);

return 0;

}

/**

* Stop the service.

*/

public void stopApp()

{

// Unregister ourselves as a listener.

if (resolver != null)

{

resolver.unregisterHandler(handlerName);

}

}

}

Note
The service implementation must have a zero-argument constructor to allow the platform to load
the service properly when initializing a peer group configured to use the service implementation. In
the ExampleServiceImpl class, no constructor is defined, so the Java compiler generates a zero-
argument constructor by default.

The init method implementation simply stores the passed parameters for later
use.The passed ID will be used later to register the service with the Resolver
service, and the given peer group will be used to obtain access to the Resolver
service.Although nothing prevents the ExampleServiceImpl from registering
with the Resolver in the init method, that task is performed in the startApp
method.The init method is called to prepare the service, but the service
shouldn’t begin handling queries until the startApp method is called. Hence,
the service doesn’t register with the Resolver service until startApp is called.
Conversely, the stopApp method unregisters the service with the Resolver ser-
vice to prevent the service from handling queries when it has been stopped.

Adding the ExampleService Implementation to a Peer Group
The most difficult part of creating a new service is not creating the Service
implementation, but adding it to a peer group.Adding the service requires
the creation of the Module Class, Module Specification, and Module

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 328

329Creating a Service

Implementation Advertisements describing the Service implementation.
Usually it is preferred that the Module Class and Specification IDs be created
beforehand so that their values are known for future reference.The simple
application in Listing 10.15 generates the various required IDs and prints their
values to the screen.

Listing 10.15 Source Code for GenerateID.java

package com.newriders.jxta.chapter10;

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

import net.jxta.platform.ModuleClassID;

import net.jxta.platform.ModuleSpecID;

/**

* A simple application to generate a Module Class ID, Module Specification

* ID, Peer Group ID, and Module Specification ID based on the standard

* peer group Module Class ID.

*/

public class GenerateID

{

/**

* Generates the IDs.

*

* @param args the command-line arguments. Ignored by this app.

*/

public static void main(String[] args)

{

// Create an entirely new Module Class ID.

ModuleClassID classID = IDFactory.newModuleClassID();

// Create a Module Specification ID based on the generated

// Module Class ID.

ModuleSpecID specID = IDFactory.newModuleSpecID(classID);

// Create an entirely new Peer Group ID.

PeerGroupID groupID = IDFactory.newPeerGroupID();

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 329

330 Chapter 10 Peer Groups and Services

// Create a Module Specification ID based on the peer group

// Module Class ID.

ModuleSpecID groupSpecID = IDFactory.newModuleSpecID(

PeerGroup.allPurposePeerGroupSpecID.getBaseClass());

// Print out the generated IDs.

System.out.println(“Module Class ID: “ + classID.toString());

System.out.println(“Module Spec ID: “ + specID.toString());

System.out.println(“Peer Group ID: “ + groupID.toString());

System.out.println(“Peer Group Module Spec ID: “

+ groupSpecID.toString());

}

}

Although it is not essential, the GenerateID application also generates the Peer
Group ID that will be used to create a peer group in the example. Creating a
new peer group is a required part of adding a new service because the defini-
tion of the services offered by a peer group cannot change.The Module
Implementation Advertisement associated with a peer group specifies which
services the peer group offers. Because this advertisement is most likely
cached throughout the network, allowing it to be changed would result in
inconsistencies in the services offered by members of the peer group across the
network. For the same reason that a Module Implementation Advertisement
cannot be changed, a Peer Group Advertisement also cannot be altered.
Therefore, offering a new service requires the creation of both a new Module
Implementation Advertisement for the peer group and a new peer group that
uses that Module Implementation Advertisement.

Because the example will have to create a new Module Implementation
Advertisement, GenerateID creates the Module Specification ID that will be
used for the new peer group’s Module Implementation Advertisement.This ID
is created using the Module Class ID of the standard peer group reference
implementation.

With all those IDs generated, all that remains is to write an application such
as Listing 10.16 that creates a new peer group that uses the new service.

Listing 10.15 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 330

331Creating a Service

Listing 10.16 Source Code for ExampleServiceTest.java

package com.newriders.jxta.chapter10;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JTextField;

import java.net.MalformedURLException;

import java.net.UnknownServiceException;

import java.net.URL;

import java.util.Enumeration;

import java.util.Hashtable;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.ServiceNotFoundException;

import net.jxta.id.IDFactory;

import net.jxta.impl.peergroup.StdPeerGroupParamAdv;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 331

332 Chapter 10 Peer Groups and Services

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.platform.ModuleClassID;

import net.jxta.platform.ModuleSpecID;

import net.jxta.protocol.ModuleClassAdvertisement;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.ModuleSpecAdvertisement;

import net.jxta.protocol.PeerGroupAdvertisement;

/**

* An application to create a peer group, configure a new service for

* the peer group, and then interact with other peers using that new

* service.

*/

public class ExampleServiceTest implements ExampleServiceListener

{

/**

* The Module Class ID to use for the service.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refModuleClassID =

“urn:jxta:uuid-128E938121DD4957B74B90EE27FDC61F05”;

/**

* The Module Specification ID to use for the service.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refModuleSpecID =

“urn:jxta:uuid-128E938121DD4957B74B90EE27FDC61FA385BCB”

+ “1BA504B0FA69F99FE84CDC25B06”;

/**

* The Peer Group ID to use for the application.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refPeerGroupID =

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 332

333Creating a Service

“urn:jxta:uuid-A87A7DD0762F47E88B2FB5452D47B3A802”;

/**

* The peer group Module Specification ID to use for the application.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refPeerGroupSpec =

“urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE00000001CB18295”

+ “F0DE94F99983AA2F00C1DE42F06”;

/**

* The Net Peer Group for the application.

*/

private PeerGroup netPeerGroup = null;

/**

* The frame for the application user interface.

*/

private JFrame clientFrame = new JFrame(“Exponentiator”);

/**

* The textfield for accepting the base input for the

* exponentiation operation.

*/

private JTextField baseText = new JTextField(5);

/**

* The textfield for accepting the power input for the

* exponentiation operation.

*/

private JTextField powerText = new JTextField(5);

/**

* The new group created by the application.

*/

private PeerGroup newGroup = null;

/**

* Create the Module Class Advertisement for the service, using the

* preconfigured ID in refModuleClassID.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 333

334 Chapter 10 Peer Groups and Services

*

* @return the generated Module Class Advertisement.

* @exception UnknownServiceException, MalformedURLException thrown

* if the refModuleClassID is invalid or malformed.

*/

private ModuleClassAdvertisement createModuleClassAdv()

throws UnknownServiceException, MalformedURLException

{

// Create the class ID from the refModuleClassID string.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

// Create the Module Class Advertisement.

ModuleClassAdvertisement moduleClassAdv =

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

// Configure the Module Class Advertisement.

moduleClassAdv.setDescription(

“A service to handle exponentiation math problems.”);

moduleClassAdv.setModuleClassID(classID);

moduleClassAdv.setName(“Exponentiator Class”);

// Return the advertisement to the caller.

return moduleClassAdv;

}

/**

* Create the Module Implementation Advertisement for the service,

* using the specification ID in the passed in ModuleSpecAdvertisement

* advertisement. Use the given ModuleImplAdvertisement to create the

* compatibility element of the module impl specification.

*

* @param groupImpl the ModuleImplAdvertisement of the parent

* peer group.

* @param moduleSpecAdv the source of the specification ID.

* @return the generated Module Implementation Advertisement.

*/

private ModuleImplAdvertisement createModuleImplAdv(

ModuleImplAdvertisement groupImpl,

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 334

335Creating a Service

ModuleSpecAdvertisement moduleSpecAdv)

{

// Get the specification ID from the passed advertisement.

ModuleSpecID specID = moduleSpecAdv.getModuleSpecID();

// Create the Module Implementation Advertisement.

ModuleImplAdvertisement moduleImplAdv = (ModuleImplAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleImplAdvertisement.getAdvertisementType());

// Configure the Module Implementation Advertisement.

moduleImplAdv.setCode(

“com.newriders.jxta.chapter10.ExampleServiceImpl”);

moduleImplAdv.setCompat(groupImpl.getCompat());

moduleImplAdv.setDescription(

“Reference Exponentiator implementation”);

moduleImplAdv.setModuleSpecID(specID);

moduleImplAdv.setProvider(“Brendon J. Wilson”);

// Return the advertisement to the caller.

return moduleImplAdv;

}

/**

* Create the Module Specification Advertisement for the service,

* using the preconfigured ID in refModuleSpecID.

*

* @return the generated Module Class Advertisement.

* @exception UnknownServiceException, MalformedURLException thrown

* if the refModuleSpecID is invalid or malformed.

*/

private ModuleSpecAdvertisement createModuleSpecAdv()

throws UnknownServiceException, MalformedURLException

{

// Create the specification ID from the refModuleSpecID string.

ModuleSpecID specID = (ModuleSpecID) IDFactory.fromURL(

new URL((refModuleSpecID)));

// Create the Module Specification Advertisement.

ModuleSpecAdvertisement moduleSpecAdv = (ModuleSpecAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 335

336 Chapter 10 Peer Groups and Services

// Configure the Module Specification Advertisement.

moduleSpecAdv.setCreator(“Brendon J. Wilson”);

moduleSpecAdv.setDescription(

“A specification for an exponentiation service.”);

moduleSpecAdv.setModuleSpecID(specID);

moduleSpecAdv.setName(“Exponentiator Spec”);

moduleSpecAdv.setSpecURI(

“http://www.brendonwilson.com/projects/jxta”);

moduleSpecAdv.setVersion(“1.0”);

// Return the advertisement to the caller.

return moduleSpecAdv;

}

/**

* Creates a peer group and configures the ExampleService

* implementation to run as a peer group service.

*

* @exception Exception, PeerGroupException if there is a problem

* while creating the peer group or the service

* advertisements.

*/

public void createPeerGroup() throws Exception, PeerGroupException

{

// The name and description for the peer group.

String name = “CreatePeerGroup”;

String description =

“An example peer group to test peer group creation”;

// The Discovery service to use to publish the module and peer

// group advertisements.

DiscoveryService discovery = netPeerGroup.getDiscoveryService();

// Obtain a preformed ModuleImplAdvertisement to use when creating

// the new peer group. This is the Module Implementation

// Advertisement of the Net Peer Group and contains all of the

// services and applications already configured to run in that peer

// group. Using this method simplifies the task of creating a new

// peer group and configuring a new service.

ModuleImplAdvertisement implAdv =

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 336

337Creating a Service

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

// Create the Module Class Advertisement.

ModuleClassAdvertisement moduleClassAdv = createModuleClassAdv();

// Create the Module Specification Advertisement.

ModuleSpecAdvertisement moduleSpecAdv = createModuleSpecAdv();

// Create the Module Implementation Advertisement.

ModuleImplAdvertisement moduleImplAdv =

createModuleImplAdv(implAdv,moduleSpecAdv);

// Get the parameters for the peer group’s Module Implementation

// Advertisement to add our service.

StdPeerGroupParamAdv params =

new StdPeerGroupParamAdv(implAdv.getParam());

// Get the services from the parameters.

Hashtable services = params.getServices();

// Add our service to the set of services.

services.put(moduleClassAdv.getModuleClassID(), moduleImplAdv);

// Set the services on the parameters, and set the parameters on

// the implementation advertisement.

params.setServices(services);

implAdv.setParam((StructuredDocument) params.getDocument(

new MimeMediaType(“text”, “xml”)));

// VERY IMPORTANT! You must change the Module Specification ID

// for the implementation advertisement. If you don’t, the new

// peer group’s Module Specification ID will still point to the

// old specification, and the new service will not be loaded.

implAdv.setModuleSpecID((ModuleSpecID) IDFactory.fromURL(

new URL(refPeerGroupSpec)));

// Publish the Module Class and Specification Advertisements.

discovery.publish(moduleClassAdv, DiscoveryService.ADV);

discovery.remotePublish(moduleClassAdv, DiscoveryService.ADV);

discovery.publish(moduleSpecAdv, DiscoveryService.ADV);

discovery.remotePublish(moduleSpecAdv, DiscoveryService.ADV);

discovery.publish(implAdv, DiscoveryService.ADV);

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 337

338 Chapter 10 Peer Groups and Services

discovery.remotePublish(implAdv, DiscoveryService.ADV);

// Create the Peer Group ID.

PeerGroupID groupID = (PeerGroupID) IDFactory.fromURL(

new URL((refPeerGroupID)));

// Create the new group using the group ID, advertisement, name,

// and description.

newGroup = netPeerGroup.newGroup(groupID, implAdv, name,

description);

// Need to publish the group remotely only because newGroup()

// handles publishing to the local peer.

PeerGroupAdvertisement groupAdv =

newGroup.getPeerGroupAdvertisement();

discovery.remotePublish(groupAdv, DiscoveryService.GROUP);

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Starts the application.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

ExampleServiceTest test = new ExampleServiceTest();

try

{

// Initialize the JXTA platform.

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 338

339Creating a Service

test.initializeJXTA();

// Create the group.

test.createPeerGroup();

// Show a GUI to accept input.

test.showGUI();

}

catch (Exception e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

}

/**

* The implementation of the ExampleServiceListener interface. This

* allows us to display a message each time a message is received by

* the ExampleService.

*

* @param answer the event containing the newly arrived message.

*/

public void processAnswer(ExampleServiceEvent event)

{

// Extract the response message from the event object.

ExampleResponseMsg er = event.getResponse();

// Print out the answer given in the response.

String answer = “The value of “ + er.getBase() + “ raised to “

+ er.getPower() + “ is: “ + er.getAnswer();

JOptionPane.showMessageDialog(null, answer, “Answer Received!”,

JOptionPane.INFORMATION_MESSAGE);

}

/**

* Convenience method to find the service and use it to send

* a query to other peers’ ExampleService.

*

* @param base the base for the exponentiation query.

* @param power the power for the exponentiation query.

*/

private void sendMessage(String base, String power)

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 339

340 Chapter 10 Peer Groups and Services

{

try

{

// Convert the input to numbers.

double baseValue = Double.parseDouble(base);

double powerValue = Double.parseDouble(power);

// Find the service on the peer group.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

ExampleService exponentiator =

(ExampleService) newGroup.lookupService(classID);

exponentiator.findAnswer(baseValue, powerValue);

}

catch (NumberFormatException e)

{

// Warn the user.

JOptionPane.showMessageDialog(null, “The base and power must “

+ “both be numbers!”, “Input Error!”,

JOptionPane.ERROR_MESSAGE);

}

catch (Exception e2)

{

// Warn the user.

JOptionPane.showMessageDialog(null, “Error finding service!”,

“Service Error!”, JOptionPane.ERROR_MESSAGE);

}

}

/**

* Displays a user interface to allow the user to send queries to

* other peers.

*

* @exception exceptions thrown only if the new service can’t be

* found.

*/

private void showGUI() throws UnknownServiceException,

MalformedURLException, ServiceNotFoundException

{

JButton sendButton = new JButton(“Send Message”);

JButton quitButton = new JButton(“Quit”);

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 340

341Creating a Service

JPanel sendPane = new JPanel();

JLabel baseLabel = new JLabel(“Base:”);

JLabel powerLabel = new JLabel(“Power:”);

Container pane = clientFrame.getContentPane();

// Populate the GUI frame.

sendPane.setLayout(new FlowLayout());

sendPane.add(baseLabel);

sendPane.add(baseText);

sendPane.add(powerLabel);

sendPane.add(powerText);

sendPane.add(sendButton);

sendPane.add(quitButton);

pane.setLayout(new BorderLayout());

pane.add(sendPane, BorderLayout.SOUTH);

// Set up listeners for the buttons.

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e)

{

// Send the message.

sendMessage(baseText.getText(), powerText.getText());

// Clear the text.

baseText.setText(“”);

powerText.setText(“”);

}

}

);

quitButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

// Stop the JXTA platform. Currently, there isn’t any

// nice way to do this.

System.exit(0);

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 341

342 Chapter 10 Peer Groups and Services

}

}

);

// Find the new service on the peer group and add ourselves

// as a listener.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

ExampleService exponentiator =

(ExampleService) newGroup.lookupService(classID);

exponentiator.addListener(this);

// Pack and display the user interface.

clientFrame.pack();

clientFrame.show();

}

}

To simplify the task of creating a Module Implementation Advertisement
for a new peer group, a developer can use the
getAllPurposePeerGroupImplAdvertisement on an existing peer group.This
method provides a copy of the peer group’s ModuleImplAdvertisement containing
the parameters that specify the services offered by the peer group. In the
reference implementation, these parameters can be manipulated via the
StdPeerGroupParamAdv class provided in the net.jxta.impl.peergroup package.

The process of creating a new peer group with a new service can be con-
fusing, so here are the essential steps that the ExampleServiceTest executes:

n createModuleClassAdv—This method creates the Module Class
Advertisement for the example service, using a Module Class ID hard-
coded in the ExampleServiceTest.This Module Class ID was generated
using GenerateID.The Module Class Advertisement is configured with the
Module Class ID, plus a simple name and description.

n createModuleSpecAdv—This method creates the Module Specification
Advertisement for the example service, using a Module Specification ID
hard-coded in the ExampleServiceTest.This Module Specification ID was
generated using GenerateID.The Module Specification Advertisement is
configured to provide version information on the new service and where
to find a document describing the specification of the service.

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 342

343Creating a Service

n createModuleImplAdv—This method creates the Module Implementation
Advertisement for the example service, using the same Module
Specification ID used when creating the Module Specification
Advertisement.The Module Implementation Advertisement is configured
to provide information on the implementation of the service.This is
where the ExampleServiceImpl code is bound to a Module Implementation
Advertisement.To provide the same compatibility as other services on
the peer, the generic implementation advertisement retrieved using the
getAllPurposePeerGroupImplAdvertisement method is passed to this method.
This advertisement is used as the source of the compatibility information
configured on the Module Implementation Advertisement for the new
service.

After the various module advertisements for the example service have been
created, the Module Implementation Advertisement for the new service must
be added to the Module Implementation Advertisement for the peer group.
The ExampleServiceTest application performs the following steps to alter the
generic peer group Module Implementation Advertisement returned by the
getAllPurposePeerGroupImplAdvertisement method:

1. Extract the parameters from the generic peer group Module
Implementation Advertisement using getParam, and create a
StdPeerGroupParams object.This object deals with the format for the para-
meters used by the reference implementation of the PeerGroup interface.

2. Extract the parameter’s Hashtable of services using getServices.

3. Add the new service implementation advertisement using the put
method. In the reference implementation, services are added to the
Hashtable using the service’s class ID as a key.

4. Set the service Hashtable on the parameters using setServices.

5. Set the parameters on the peer group’s Module Implementation
Advertisement using setParam.

6. Change the Module Implementation Advertisement’s Module
Specification ID.This is a very important step! If the implementation’s
Module Implementation’s Module Specification ID isn’t changed, the
new peer group will use the Module Specification ID of the peer group
that provided the generic peer group Module Implementation
Advertisement.When the new peer group is created, the platform will
search for an implementation of the old module specification; therefore,
the new service will never be loaded.

12_2344 Ch 10 5/14/02 11:44 AM Page 343

344 Chapter 10 Peer Groups and Services

When those steps are completed, the new peer group can be created using the
new peer group Module Implementation Advertisement.The new peer
group’s Module Implementation Advertisement causes the new service to be
loaded and to start the new service.

Running the ExampleServiceTest Application
To run the ExampleServiceTest and see the example service in action, follow
these steps:

1. Compile all the source code.

2. Place the resulting class files in a new directory.

3. Copy all the JXTA JAR files into this new directory.

4. Create a copy of this directory.

5. Start the ExampleServiceTest from the first directory by opening a com-
mand console, changing to the first directory, and executing this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter10.ExampleServiceTest

The user interface for the application should appear. Start the ExampleServiceTest
application from the second directory in the same way.After the user interface
appears, you should be able to use the user interface to send a message via the
example service between the two applications.

Summary
In this chapter, you’ve seen peer groups and peer group services and learned
how they are related.As part of this discussion, this chapter explored how
modules can be used within JXTA and how JXTA provides support for
multiple versions and implementations of a module. Finally, the chapter
demonstrated how to create a new service module and add it to a new peer
group. In the next chapter, all the elements of the previous chapters are
brought together in a sample application to demonstrate the power of JXTA.

12_2344 Ch 10 5/14/02 11:44 AM Page 344

Putting It All Together

III

11 A Complete Sample Application

12 The Future of JXTA

13_2344 Part III 5/14/02 11:46 AM Page 345

13_2344 Part III 5/14/02 11:46 AM Page 346

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

A Complete Sample Application

11

AT THIS POINT IN THE BOOK, you should be familiar with all the pieces
involved in a JXTA solution, but not necessarily how to put them together
into a complete application.This chapter provides a complete sample
application that illustrates how to assemble the pieces provided by the
JXTA reference implementation into a complete P2P solution.

The sample application in this chapter demonstrates the creation of a
JXTA-based chat application with simple presence management.The applica-
tion is similar to other popular instant-messaging clients, but it incorporates
fewer features.The sample application incorporates many of the JXTA proto-
cols to provide a complete solution.

The main features of this application are the capability to chat with a
remote user and monitor remote users’ presence status.This status allows a user
to determine whether one of his contacts (or “buddies”) is currently online,
offline, busy, or temporarily away from the computer.

14_2344 Ch 11 5/14/02 11:48 AM Page 347

348 Chapter 11 A Complete Sample Application

Creating the Presence Service
The Presence service provides a mechanism for exchanging presence
information with another user. For this application, the Presence service is
fairly unsophisticated and doesn’t attempt to address more complex presence-
management problems. For example, this Presence service assumes that a user
is on the network at only a single location using a single peer. In addition, the
Presence service assumes that JXTA provides a reliable transport, which is not
always a good assumption.Although the reference implementation uses TCP, a
reliable transport, there are no guarantees on a given JXTA peer that the peer
will be using a reliable transport.

The JXTA Community is currently working on a fully featured Presence
Management Framework that will provide much more functionality than this
sample application’s Presence service. For more information on the Presence
Management Framework, see the project web site at presence.jxta.org.This
example Presence service is simply an example designed to show how the var-
ious pieces explored over the course of this book fit together into a single
application.

At first glance, it might appear that the Presence service should be built
using the Resolver service. However, building the Presence service using the
Resolver service would require a peer to send a query to a remote peer every
time that it required presence information.The network overhead incurred by
this technique would be undesirable.

It would be better if presence information could be published using the
Discovery service, thus allowing presence information to be cached by other
peers. Of course, the risk here is that the presence information might be stale,
but this can be resolved by publishing the advertisement with a short lifetime.
Another disadvantage is that this method does not scale well to large numbers
of peers.This is something that is acceptable for this simple application, but it
would not be acceptable in a large-scale P2P solution.

To implement the Presence service, three components are needed:
n An advertisement—The Presence service needs a format for the pres-

ence information to be exchanged with other peers using the Discovery
service.The formatting and parsing logic for the advertisement must be
implemented to allow the Presence service to handle the advertisement
in an encapsulated fashion.

n A service—The Presence service itself needs to provide an interface
that third-party developers can use to interact with the service.An
implementation of the service’s interface is required to handle the
details of using the Discovery service to publish and discover presence
information.

14_2344 Ch 11 5/14/02 11:48 AM Page 348

349Creating the Presence Service

n A listener—This application needs some way of receiving notification
that new presence information has been received by the Presence service.
A listener interface that can be implemented and registered with the
Presence service solves this problem.

The creation of these elements is the subject of the next two sections.

The Presence Advertisement
The Presence Advertisement is responsible for describing the current presence
status of a particular user.To uniquely identify both a peer and the user, the
Presence Advertisement needs the Peer ID, plus one other piece of identifica-
tion that is unique to the user. For this purpose, the Presence Advertisement
uses the user’s email address to uniquely identify the user.

To represent the presence information, the Presence Advertisement uses the
XML format shown in Listing 11.1.

Listing 11.1 The Presence Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<PresenceAdvertisement>

<PeerID> . . . </PeerID>

<EmailAddress> . . . </EmailAddress>

<PresenceStatus> . . . </PresenceStatus>

<Name> . . . </Name>

</PresenceAdvertisement>

The content of the Presence Advertisement describes all the elements related
to a user’s presence on the P2P network:

n PeerID—A required element containing the Peer ID identifying the peer
that the user is currently using on the network.

n EmailAddress—A required element containing the user’s email address.
The email address is used as a unique identifier for a user.

n PresenceStatus—A required element containing an integer representing
the user’s presence status.A value of 0 indicates that the user is offline, 1
indicates that the user is online, 2 indicates that the user is currently busy,
and 3 indicates that the user is temporarily away from the computer.

n Name—An optional element containing a display name or common name
for the user.

To implement the Presence Advertisement, you define an abstract class derived
from the net.jxta.document.Advertisement class.This class, PresenceAdvertisement,
is shown in Listing 11.2.

14_2344 Ch 11 5/14/02 11:48 AM Page 349

350 Chapter 11 A Complete Sample Application

Listing 11.2 Source Code for PresenceAdvertisement.java

package com.newriders.jxta.chapter11.protocol;

import net.jxta.document.Advertisement;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.id.ID;

import net.jxta.protocol.PipeAdvertisement;

import com.newriders.jxta.chapter11.presence.PresenceService;

/**

* An abstract class defining an advertisement containing the elements used

* to describe a user’s presence status. A user is assumed to be uniquely

* described by his or her email address.

*/

public abstract class PresenceAdvertisement extends Advertisement

{

/**

* The root element for the advertisement’s XML document.

*/

private static final String advertisementType = “PresenceAdvertisement”;

/**

* The email address identifying the user whose presence information

* this advertisement describes.

*/

private String emailAddress = null;

/**

* A simple name for the user specified by the advertisement’s

* email address.

*/

private String name = null;

/**

* The Peer ID locating the peer on the network.

*/

private String peerID = null;

14_2344 Ch 11 5/14/02 11:48 AM Page 350

351Creating the Presence Service

/**

* A simple descriptor identifying the user’s presence status.

* The user can indicate that he or she is online, offline, busy, or

* away.

*/

private int presenceStatus = PresenceService.OFFLINE;

/**

* Returns the advertisement type for the advertisement’s document.

*

* @return the advertisement type String.

*/

public static String getAdvertisementType()

{

return advertisementType;

}

/**

* Returns the email address String describing the user whose presence

* status is described by this advertisement.

*

* @return the email address for the advertisement.

*/

public String getEmailAddress()

{

return emailAddress;

}

/**

* Returns a unique identifier for this document. There is none for

* this advertisement type, so this method returns the null ID.

*

* @return the null ID.

*/

public ID getID()

{

return ID.nullID;

}

/**

* Returns the simple name for the user described by this advertisement.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 351

352 Chapter 11 A Complete Sample Application

*

* @return the user’s name.

*/

public String getName()

{

return name;

}

/**

* Returns the Peer ID of the user described by this advertisement.

*

* @return the Peer ID of the user.

*/

public String getPeerID()

{

return peerID;

}

/**

* Returns the presence status information of the user described by

* this advertisement.

*

* @return the user’s status information.

*/

public int getPresenceStatus()

{

return presenceStatus;

}

/**

* Sets the email address String describing the user whose presence

* status is described by this advertisement.

*

* @param emailAddress the email address for the advertisement.

*/

public void setEmailAddress(String emailAddress)

{

this.emailAddress = emailAddress;

}

/**

Listing 11.2 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 352

353Creating the Presence Service

* Sets the simple name for the user described by this advertisement.

*

* @param name the user’s name.

*/

public void setName(String name)

{

this.name = name;

}

/**

* Sets the Peer ID identifying the peer’s location on the P2P network.

*

* @param peerID the Peer ID for the advertisement.

*/

public void setPeerID(String peerID)

{

this.peerID = peerID;

}

/**

* Sets the presence status information of the user described by this

* advertisement.

*

* @param presenceStatus the user’s status information.

*/

public void setPresenceStatus(int presenceStatus)

{

this.presenceStatus = presenceStatus;

}

}

The PresenceAdvertisement class defines basic accessors to set and retrieve the
advertisement’s various parameters. In addition, the class defines the static
getAdvertisementType method to return the root element tag used by the
Presence Advertisement.

PresenceAdvertisement also defines the getID method that is used by the
Cache Manager to index the advertisement in the cache.The ID returned by
getID should uniquely identify the advertisement.To avoid having to imple-
ment your own ID implementation, PresenceAdvertisement returns ID.nullID.
This null ID prompts the Cache Manager to use a hash of the advertisement to
index the advertisement in the cache, and it is sufficient for your purposes.

14_2344 Ch 11 5/14/02 11:48 AM Page 353

354 Chapter 11 A Complete Sample Application

The Advertisement.getDocument method is not defined by
PresenceAdvertisement, to allow the implementation of PresenceAdvertisement
to define logic for parsing and formatting a Presence Advertisement.This
method is implemented by the PresenceAdv subclass, shown in Listing 11.3,
using the JXTA reference implementation.

Listing 11.3 Source Code for PresenceAdv.java

package com.newriders.jxta.chapter11.impl.protocol;

import java.io.InputStream;

import java.io.IOException;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Advertisement;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.Element;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredDocumentUtils;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

import net.jxta.protocol.PipeAdvertisement;

import com.newriders.jxta.chapter11.protocol.PresenceAdvertisement;

/**

* An implementation of the PresenceAdvertisement abstract class. This

* class is responsible for parsing and formatting the XML document

* used to define presence information for a peer.

*/

public class PresenceAdv extends PresenceAdvertisement

{

/**

* A convenient constant for the XML MIME type.

*/

private static final String mimeType = “text/xml”;

14_2344 Ch 11 5/14/02 11:48 AM Page 354

355Creating the Presence Service

/**

* The element name for the presence advertisement’s email address info.

*/

private static final String tagEmailAddress = “EmailAddress”;

/**

* The element name for the presence advertisement’s simple name info.

*/

private static final String tagName = “Name”;

/**

* The element name for the presence advertisement’s Peer ID.

*/

private static final String tagPeerID = “PeerID”;

/**

* The element name for the presence advertisement’s status info.

*/

private static final String tagPresenceStatus = “PresenceStatus”;

/**

* An Instantiator used by the AdvertisementFactory to instantiate

* this class in an abstract fashion.

*/

public static class Instantiator

implements AdvertisementFactory.Instantiator

{

/**

* Returns the identifying type of this advertisement.

*

* @return the name of the advertisement’s root element.

*/

public String getAdvertisementType()

{

return PresenceAdvertisement.getAdvertisementType();

}

/**

* Returns a new PresenceAdvertisement implementation instance.

*

* @return a new presence advertisement instance.

*/

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 355

356 Chapter 11 A Complete Sample Application

public Advertisement newInstance()

{

return new PresenceAdv();

}

/**

* Instantiates a new PresenceAdvertisement implementation instance

* populated from the given root element.

*

* @param root the root of the object tree to use to populate the

* advertisement object.

* @return a new populated presence advertisement instance.

*/

public Advertisement newInstance(Element root)

{

return new PresenceAdv(root);

}

};

/**

* Creates a new presence advertisement.

*/

public PresenceAdv()

{

super();

}

/**

* Creates a new presence advertisement by parsing the given stream.

*

* @param stream the InputStream source of the advertisement data.

* @exception IOException if the advertisement can’t be parsed from

* the stream.

*/

public PresenceAdv(InputStream stream) throws IOException

{

super();

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(mimeType), stream);

Listing 11.3 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 356

357Creating the Presence Service

readAdvertisement(document);

}

/**

* Creates a new presence advertisement by parsing the given document.

*

* @param document the source of the advertisement data.

*/

public PresenceAdv(Element document) throws IllegalArgumentException

{

super();

readAdvertisement((TextElement) document);

}

/**

* Returns a Document object containing the advertisement’s

* document tree.

*

* @param asMimeType the desired MIME type for the

* advertisement rendering.

* @return the Document containing the advertisement’s document

* object tree.

* @exception IllegalArgumentException thrown if either the email

* address or the Peer ID is null.

*/

public Document getDocument(MimeMediaType asMimeType)

throws IllegalArgumentException

{

// Check that the required elements are present.

if ((null != getEmailAddress()) && (null != getPeerID()))

{

PipeAdvertisement pipeAdv = null;

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, getAdvertisementType());

Element element;

// Add the Peer ID information.

element = document.createElement(tagPeerID, getPeerID());

document.appendChild(element);

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 357

358 Chapter 11 A Complete Sample Application

// Add the email address information.

element = document.createElement(

tagEmailAddress, getEmailAddress());

document.appendChild(element);

// Add the display name information, if any.

if (null != getName())

{

element = document.createElement(tagName, getName());

document.appendChild(element);

}

// Add the presence status information.

element = document.createElement(tagPresenceStatus,

Integer.toString(getPresenceStatus()));

document.appendChild(element);

return document;

}

else

{

throw new IllegalArgumentException(

“Missing email address or peer ID!”);

}

}

/**

* Parses the given document tree for the presence advertisement.

*

* @param document the object containing the presence

* advertisement data.

* @exception IllegalArgumentException if the document is not a

* presence advertisement, as expected.

*/

public void readAdvertisement(TextElement document)

throws IllegalArgumentException

{

if (document.getName().equals(getAdvertisementType()))

{

Enumeration elements = document.getChildren();

Listing 11.3 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 358

359Creating the Presence Service

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

// Check for the email address element.

if (element.getName().equals(tagEmailAddress))

{

setEmailAddress(element.getTextValue());

continue;

}

// Check for the display name element.

if (element.getName().equals(tagName))

{

setName(element.getTextValue());

continue;

}

// Check for the email address element.

if (element.getName().equals(tagPresenceStatus))

{

setPresenceStatus(

Integer.parseInt(element.getTextValue()));

continue;

}

// Check for the Peer ID element.

if (element.getName().equals(tagPeerID))

{

setPeerID(element.getTextValue());

continue;

}

}

}

else

{

throw new IllegalArgumentException(

“Not a PresenceAdvertisement document!”);

}

}

/**

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 359

360 Chapter 11 A Complete Sample Application

* Returns an XML String representation of the advertisement.

*

* @return the XML String representing this advertisement.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc = (StructuredTextDocument)

getDocument(new MimeMediaType(mimeType));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

In addition to providing a getDocument implementation, the PresenceAdv class
provides several constructors that provide advertisement parsing functionality.
All the parsing and formatting functionality is built using the net.jxta.document
classes to handle manipulating the XML object tree.

In Chapter 4,“The Peer Discovery Protocol,” you learned about the
AdvertisementFactory class and how it could be used to instantiate an
Advertisement implementation in an abstract manner using a String. Usually,
this String comes from the abstract advertisement implementation class’s
getAdvertisementType method:

PeerAdvertisement advertisement =
(PeerAdvertisement)

AdvertisementFactory.newAdvertisement(
PeerAdvertisement.getAdvertisementType());

For AdvertisementFactory to be capable of doing the same with the Presence
Advertisement implementation, the implementation class must be registered
with AdvertisementFactory.To register an implementation class, the application
will need to call AdvertisementFactory.registerAdvertisementInstance:

public static boolean registerAdvertisementInstance(
String rootType, Instantiator instantiator)

Listing 11.3 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 360

361Creating the Presence Service

The rootType String defines the advertisement type String that will be mapped
to the advertisement implementation.The instantiator parameter is an
instance of an implementation of the AdvertisementFactory.Instantiator class.
The PresenceAdv class shown in Listing 11.3 provides an implementation of this
class that the AdvertisementFactory can use to create a new PresenceAdv instance.
To register the PresenceAdv implementation with AdvertisementFactory, the sam-
ple application must execute the following:

AdvertisementFactory.registerAdvertisementInstance(
PresenceAdvertisement.getAdvertisementType(),
new PresenceAdv.Instantiator());

This call needs to be executed when the application starts, before any
other class attempts to use AdvertisementFactory to instantiate a Presence
Advertisement. In the example, registerAdvertisementInstance is called in the
Presence service’s init method to ensure that the advertisement type is
registered.

The Presence Service Definition
Although this application could handle publishing and discovering Presence
Advertisements directly, it would be better if a developer could avoid handling
the Presence Advertisement and interacting with the Discovery service. If you
define an interface for the Presence service, the solution will be more flexible
and developers will be shielded from future implementation changes.

For example, if you didn’t define an interface, a developer would have to
use the Presence Advertisement classes and the Discovery service directly.
What happens if the developer decides later that the application needs to use
a mechanism other than the Discovery service for distributing and discovering
Presence Advertisements? The application’s code will probably need to be
changed in several places. However, if the basic functionality of distributing
and discovering presence information is defined as an interface, the developer
can simply provide a different implementation of the interface and change the
implementation that is used by the application.

The interface for the Presence service must allow a developer to do only
two things: announce presence information and find presence information.
Part of finding presence information involves notifying listener objects when
presence information is found or received, necessitating some way of
registering and unregistering listeners.All this functionality is defined by
the PresenceService interface shown in Listing 11.4.

14_2344 Ch 11 5/14/02 11:48 AM Page 361

362 Chapter 11 A Complete Sample Application

Listing 11.4 Source Code for PresenceService.java

package com.newriders.jxta.chapter11.presence;

import net.jxta.service.Service;

/**

* An interface for the Presence service, a service that allows peers to

* exchange presence status information specifying their current status

* (offline, online, busy, away). This interface defines the operations

* that a developer can expect to use to manipulate the Presence service,

* regardless of which underlying implementation of the service is being

* used.

*/

public interface PresenceService extends Service

{

/**

* The module class ID for the Presence class of service.

*/

public static final String refModuleClassID =

“urn:jxta:uuid-59A9A948905341119EAB8630EED42AB905”;

/**

* A status value indicating that a user is currently online but

* is temporarily away from the device.

*/

public static final int AWAY= 3;

/**

* A status value indicating that a user is currently online but

* is busy and does not want to be disturbed.

*/

public static final int BUSY = 2;

/**

* A status value indicating that a user is currently offline.

*/

public static final int OFFLINE = 0;

/**

* A status value indicating that a user is currently online.

*/

14_2344 Ch 11 5/14/02 11:48 AM Page 362

363Creating the Presence Service

public static final int ONLINE = 1;

/**

* Add a listener object to the service. When a new Presence Response

* Message arrives, the service will notify each registered listener.

*

* @param listener the listener object to register with the service.

*/

public void addListener(PresenceListener listener);

/**

* Announce updated presence information within the peer group.

*

* @param presenceStatus the updated status for the user identified

* by the email address.

* @param emailAddress the email address used to identify the user

* associated with the presence info.

* @param name a display name for the user associated with the

* presence info.

*/

public void announcePresence(int presenceStatus, String emailAddress,

String name);

/**

* Sends a query to find presence information for the user specified

* by the given email address. Any response received by the service

* will be dispatched to registered PresenceListener objects.

*

* @param emailAddress the email address to use to find presence info.

*/

public void findPresence(String emailAddress);

/**

* Removes a given listener object from the service. Once removed,

* a listener will no longer be notified when a new Presence Response

* Message arrives.

*

* @param listener the listener object to unregister.

*/

public boolean removeListener(PresenceListener listener);

}

14_2344 Ch 11 5/14/02 11:48 AM Page 363

364 Chapter 11 A Complete Sample Application

To allow developers to handle notification of newly received presence
information, the PresenceService class enables a developer to register and
unregister a listener using the addListener and removeListener methods.The
PresenceListener interface used by both of these methods is shown in
Listing 11.5.

Listing 11.5 Source Code for PresenceListener.java

package com.newriders.jxta.chapter11.presence;

import com.newriders.jxta.chapter11.protocol.PresenceAdvertisement;

/**

* An interface to encapsulate an object that listens for notification

* from the PresenceService of newly arrived presence information.

*/

public interface PresenceListener

{

/**

* Notify the listener of newly arrived presence information.

*

* @param presenceInfo the newly received presence information.

*/

public void presenceUpdated(PresenceAdvertisement presenceInfo);

}

The implementation of PresenceService that will be used by the sample appli-
cation relies on the DiscoveryService to handle publishing and discovering
Presence Advertisements.The PresenceService implementation is shown in
Listing 11.6.

Listing 11.6 Source Code for PresenceServiceImpl.java

package com.newriders.jxta.chapter11.impl.presence;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.util.Enumeration;

import java.util.Vector;

import net.jxta.discovery.DiscoveryEvent;

14_2344 Ch 11 5/14/02 11:48 AM Page 364

365Creating the Presence Service

import net.jxta.discovery.DiscoveryListener;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.Advertisement;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.ID;

import net.jxta.impl.protocol.DiscoveryResponse;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.DiscoveryResponseMsg;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.service.Service;

import com.newriders.jxta.chapter11.impl.protocol.PresenceAdv;

import com.newriders.jxta.chapter11.presence.PresenceListener;

import com.newriders.jxta.chapter11.presence.PresenceService;

import com.newriders.jxta.chapter11.protocol.PresenceAdvertisement;

/**

* The implementation of the PresenceService interface. This service

* builds on top of the Discovery service to provide the functionality

* for requesting and providing presence information.

*/

public class PresenceServiceImpl implements PresenceService,

DiscoveryListener

{

/**

* The Module Specification ID for the Presence service.

*/

public static final String refModuleSpecID =

“urn:jxta:uuid-59A9A948905341119EAB8630EED42AB”

+ “9F4611FF6377C4931AE71BE299B9F34DF06”;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 365

366 Chapter 11 A Complete Sample Application

/**

* The default expiration timeout for published presence advertisements.

* Set to 1 minute.

*/

private static final int DEFAULT_EXPIRATION = 1000 * 60 * 1;

/**

* The default lifetime for published presence advertisements.

* Set to 1 minutes.

*/

private static final int DEFAULT_LIFETIME = 1000 * 60 * 5;

/**

* The element name for the presence advertisement’s email address info.

*/

private static final String tagEmailAddress = “EmailAddress”;

/**

* The Discovery service used to publish presence information.

*/

private DiscoveryService discovery = null;

/**

* The Module Implementation advertisement for this service.

*/

private Advertisement implAdvertisement = null;

/**

* The local Peer ID.

*/

private String localPeerID = null;

/**

* The peer group to which the service belongs.

*/

private PeerGroup peerGroup = null;

/**

* A unique query ID that can be used to track a query.

*/

private int queryID = 0;

Listing 11.6 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 366

367Creating the Presence Service

/**

* The set of listener objects registered with the service.

*/

private Vector registeredListeners = new Vector();

/**

* PresenceServiceImpl constructor comment.

*/

public PresenceServiceImpl()

{

super();

}

/**

* Add a listener object to the service. When a new Presence Response

* Message arrives, the service will notify each registered listener.

* This method is synchronized to prevent multiple threads from

* altering the set of registered listeners simultaneously.

*

* @param listener the listener object to register with the service.

*/

public synchronized void addListener(PresenceListener listener)

{

registeredListeners.addElement(listener);

}

/**

* Announce presence status information to the peer group.

*

* @param presenceStatus the current status to announce.

* @param emailAddress the user’s email address.

* @param name the user’s display name.

*/

public void announcePresence(int presenceStatus, String emailAddress,

String name)

{

if (discovery != null)

{

/*

PresenceAdvertisement presenceInfo = (PresenceAdvertisement)

AdvertisementFactory.newAdvertisement(

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 367

368 Chapter 11 A Complete Sample Application

PresenceAdvertisement.getAdvertisementType());

*/

// In some earlier versions of JXTA, registering the

// advertisement doesn’t work properly. To work around this,

// simply instantiate the advertisement implementation directly.

// This is not the recommended way to get an advertisement.

// The recommended way is shown in the commented line

// preceeding this comment.

PresenceAdvertisement presenceInfo = new PresenceAdv();

// Configure the new advertisement.

presenceInfo.setPresenceStatus(presenceStatus);

presenceInfo.setEmailAddress(emailAddress);

presenceInfo.setName(name);

presenceInfo.setPeerID(localPeerID);

try

{

// Publish the advertisement locally.

discovery.publish(presenceInfo, DiscoveryService.ADV,

DEFAULT_EXPIRATION, DEFAULT_LIFETIME);

}

catch (IOException e)

{

System.out.println(“Error publishing locally: “ + e);

}

// Publish the advertisement remotely.

discovery.remotePublish(presenceInfo, DiscoveryService.ADV,

DEFAULT_LIFETIME);

}

}

/**

* Handle notification of arriving discovery response messages,

* determine whether the response contains presence information,

* and, if so, dispatch the presence information to registered

* PresenceListeners.

*

* @param event the object containing the discovery response.

*/

Listing 11.6 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 368

369Creating the Presence Service

public void discoveryEvent(DiscoveryEvent event)

{

DiscoveryResponseMsg response = event.getResponse();

// Extract the PresenceAdvertisement from the response.

Enumeration responses = response.getResponses();

while (responses.hasMoreElements())

{

String responseElement = (String) responses.nextElement();

// Check for null response advertisement.

if (null != responseElement)

{

// Parse the advertisement.

try

{

ByteArrayInputStream stream =

new ByteArrayInputStream(

responseElement.getBytes());

/*

PresenceAdvertisement advertisement =

(PresenceAdvertisement)

AdvertisementFactory.newAdvertisement(

new MimeMediaType(“text/xml”), stream);

*/

// In some earlier versions of JXTA, registering the

// advertisement doesn’t work properly. To work around

// this, simply instantiate the advertisement

// implementation directly. This is not the recommended

// way to get an advertisement. The recommended way

// is shown in the commented line preceeding this

// comment.

PresenceAdvertisement advertisement =

new PresenceAdv(stream);

// Dispatch the advertisement to the registered presence

// listeners.

Enumeration listeners = registeredListeners.elements();

while (listeners.hasMoreElements())

{

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 369

370 Chapter 11 A Complete Sample Application

PresenceListener listener =

(PresenceListener) listeners.nextElement();

// Notify the listener of the presence update.

listener.presenceUpdated(advertisement);

}

}

catch (IOException e)

{

// Obviously not a response to our query for presence

// information. Ignore the error.

System.out.println(“Error in discoveryEvent: “ + e);

}

}

else

{

System.out.println(“Response advertisement is null!”);

}

}

}

/**

* Sends a query to find presence information for the user specified

* by the given email address. Any response received by the service

* will be dispatched to registered PresenceListener objects.

*

* @param emailAddress the email address to use to find presence info.

*/

public void findPresence(String emailAddress)

{

// Make sure the service has been started.

if (discovery != null)

{

// Send a remote discovery for presence information.

discovery.getRemoteAdvertisements(null, DiscoveryService.ADV,

tagEmailAddress, emailAddress, 0, null);

// Do a local discovery for presence information.

try

{

Enumeration enum = discovery.getLocalAdvertisements(

Listing 11.6 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 370

371Creating the Presence Service

DiscoveryService.ADV, tagEmailAddress, emailAddress);

while (enum.hasMoreElements())

{

PresenceAdvertisement advertisement =

(PresenceAdvertisement) enum.nextElement();

// Dispatch the advertisement to the registered presence

// listeners.

Enumeration listeners = registeredListeners.elements();

while (listeners.hasMoreElements())

{

PresenceListener listener =

(PresenceListener) listeners.nextElement();

// Notify the listener of the presence update.

listener.presenceUpdated(advertisement);

}

}

}

catch (IOException e)

{

System.out.println(“Error in findPresence: “ + e);

}

}

}

/**

* Returns the advertisement for this service. In this case, this is

* the ModuleImplAdvertisement passed in when the service was

* initialized.

*

* @return the advertisement describing this service.

*/

public Advertisement getImplAdvertisement()

{

return implAdvertisement;

}

/**

* Returns an interface used to protect this service.

*

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 371

372 Chapter 11 A Complete Sample Application

* @return the wrapper object to use to manipulate this service.

*/

public Service getInterface()

{

// We don’t really need to provide an interface object to protect

// this service, so this method simply returns the service itself.

return this;

}

/**

* Initialize the service.

*

* @param group the PeerGroup containing this service.

* @param assignedID the identifier for this service.

* @param implAdv the advertisement specifying this service.

* @exception PeerGroupException is not thrown ever by this

* implementation.

*/

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)

throws PeerGroupException

{

// Save the module’s implementation advertisement.

implAdvertisement = (ModuleImplAdvertisement) implAdv;

// Save a reference to the group of which that this service is

// a part.

peerGroup = group;

// Get the local Peer ID.

localPeerID = group.getPeerID().toString();

// Register the advertisement type.

// In some earlier versions of JXTA, registering the advertisement

// doesn’t work properly. To work around this, you can instead

// simply instantiate the advertisement implementation directly.

// This is not the recommended way to get an advertisement.

// In this class, I’ve used the workaround in the discoveryEvent

// and accouncePresence methods, but I’ve provided the

// as well.

/*

AdvertisementFactory.registerAdvertisementInstance(

Listing 11.6 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 372

373Creating the Presence Service

PresenceAdvertisement.getAdvertisementType(),

new PresenceAdv.Instantiator());

*/

}

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new Presence Response

* Message arrives. This method is synchronized to prevent multiple

* threads from altering the set of registered listeners simultaneously.

*

* @param listener the listener object to unregister.

*/

public synchronized boolean removeListener(PresenceListener listener)

{

return registeredListeners.removeElement(listener);

}

/**

* Start the service.

*

* @param args the arguments to the service. Not used.

* @return 0 to indicate the service started.

*/

public int startApp(String[] args)

{

// Now that the service is being started, set the DiscoveryService

// object to use to publish presence information.

discovery = peerGroup.getDiscoveryService();

// Add ourselves as a listener.

discovery.addDiscoveryListener(this);

return 0;

}

/**

* Stop the service.

*/

public void stopApp()

{

if (discovery != null)

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 373

374 Chapter 11 A Complete Sample Application

{

// Unregister ourselves as a listener.

discovery.removeDiscoveryListener(this);

discovery = null;

// Empty the set of listeners.

registeredListeners.removeAllElements();

}

}

}

Creating the Chat Service
Despite its name, the Chat service doesn’t manage the chat session between
two users. Instead, the Chat service is responsible for negotiating a Pipe
Advertisement that can be used to establish a chat session.The Pipe
Advertisement that is exchanged is used in conjunction with the
BidirectionalPipeService to bind the input and output pipes to use from
conducting the actual chat conversation.

The Initiate Chat Request Message
Before it can chat with a remote peer, a peer must request a Pipe
Advertisement to establish the chat session with the remote peer.Although
the Pipe Advertisement could have been included in the user’s Presence
Advertisement, there are a couple reasons for not doing this:

n The functionality is unrelated—Including the Pipe Advertisement in
the Presence Advertisement would pollute the Presence Advertisement
with information unrelated to conveying presence information. It would
create an unnecessary link between the Presence service and the Chat
service.Any developer who wanted to use the Chat service would end
up having to incorporate the Presence service, even if the application
didn’t require Presence information.

n A user wouldn’t be able to restrict who can chat with him—If a
user’s Presence Advertisement incorporated a Pipe Advertisement, anyone
could start sending messages. By forcing a peer to request a Pipe
Advertisement, the user’s peer has the opportunity to block a chat session
by not responding.

Listing 11.6 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 374

375Creating the Chat Service

The Initiate Chat Request Message requests a Pipe Advertisement to use to
establish a chat session using the XML shown in Listing 11.7.

Listing 11.7 The Initiate Chat Request Message

<?xml version=”1.0” encoding=”UTF-8”?>

<InitiateChatRequest>

<EmailAddress> . . . </EmailAddress>

<Name> . . . </Name>

</InitiateChatRequest>

The Initiate Chat Request Message contains the information that a peer
receiving the request needs to determine whether to approve a chat session:

n EmailAddress—A required element containing the email address of the
user making the request.The email address is used as a unique identifier
for a user requesting a chat session.

n Name—An optional element containing a display name or common name
for the user requesting the chat session.

When a peer receives an Initiate Chat Request Message, the peer can extract
the EmailAddress and determine whether it wants to chat with the user
requesting the chat session. If the peer wants to chat, an Initiate Chat
Response Message is returned containing a Pipe Advertisement to use to
establish the chat session. Otherwise, the peer does not return any response
and the requesting peer cannot establish a chat session.

The Initiate Chat Request Message is broken into two classes,
InitiateChatRequestMessage and InitiateChatRequest.The
InitiateChatRequestMessage abstract class defines the majority of the functional-
ity but leaves the implementation of the message rendering and parsing to the
InitiateChatRequest class.The source code for InitiateChatRequestMessage and
InitiateChatRequest is shown in Listings 11.8 and 11.9, respectively.

Listing 11.8 Source Code for InitiateChatRequestMessage.java

package com.newriders.jxta.chapter11.protocol;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

/**

* An abstract class defining a request to begin a chat session. This

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 375

376 Chapter 11 A Complete Sample Application

* request is responsible for sending information on a peer/user requesting

* a chat session so that the recipient can use it to determine whether

* to send a response containing a Pipe Advertisement to use to

* start the chat session.

*/

public abstract class InitiateChatRequestMessage

{

/**

* The email address of the user requesting the chat session. This

* is used to identify the user requesting the chat session.

*/

private String emailAddress = null;

/**

* A display name to use to represent the user making the request

* during the chat session.

*/

private String name = null;

/**

* Returns a Document object containing the query’s document tree.

*

* @param asMimeType the desired MIME type for the query

* rendering.

* @return the Document containing the query’s document object

* tree.

*/

public abstract Document getDocument(MimeMediaType asMimeType);

/**

* Retrieve the email address of the user associated with the local

* peer.

*

* @return the email address used to identify the user.

*/

public String getEmailAddress()

{

return emailAddress;

}

Listing 11.8 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 376

377Creating the Chat Service

/**

* Retrieve the display name of the user associated with the local peer.

*

* @return the display name used to identify the user during the

* chat session.

*/

public String getName()

{

return name;

}

/**

* Sets the email address of the user associated with the local peer.

*

* @param emailAddress the email address used to identify the user.

*/

public void setEmailAddress(String emailAddress)

{

this.emailAddress = emailAddress;

}

/**

* Sets the display name of the user associated with the local peer.

*

* @param name the display name used to identify the user during

* the chat session.

*/

public void setName(String name)

{

this.name = name;

}

}

Listing 11.9 Source Code for InitiateChatRequest.java

package com.newriders.jxta.chapter11.impl.protocol;

import java.io.InputStream;

import java.io.IOException;

import java.io.StringWriter;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 377

378 Chapter 11 A Complete Sample Application

import java.util.Enumeration;

import net.jxta.document.Element;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

import com.newriders.jxta.chapter11.protocol.InitiateChatRequestMessage;

/**

* An implementation of the InitiateChatRequestMessage abstract class. This

* class is responsible for parsing and formatting the XML document used to

* define a request to initiate a chat session.

*/

public class InitiateChatRequest extends InitiateChatRequestMessage

{

/**

* The root element for the request’s XML document.

*/

private static final String documentRootElement = “InitiateChatRequest”;

/**

* A convenient constant for the XML MIME type.

*/

private static final String mimeType = “text/xml”;

/**

* The element name for the email address info.

*/

private static final String tagEmailAddress = “EmailAddress”;

/**

* The element name for the display name info.

*/

private static final String tagName = “Name”;

Listing 11.9 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 378

379Creating the Chat Service

/**

* Creates a new request object.

*/

public InitiateChatRequest()

{

super();

}

/**

* Creates a new Initiate Chat Request Message by parsing the

* given stream.

*

* @param stream the InputStream source of the query data.

* @exception IOException if the query can’t be parsed from the

* stream.

* @exception IllegalArgumentException thrown if the data does not

* contain a Presence Query Message.

*/

public InitiateChatRequest(InputStream stream)

throws IOException, IllegalArgumentException

{

super();

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(mimeType), stream);

readDocument(document);

}

/**

* Returns a Document object containing the request’s document tree.

*

* @param asMimeType the desired MIME type for the

* request rendering.

* @return the Document containing the request’s document

* object tree.

* @exception IllegalArgumentException thrown if the email address

* is null.

*/

public Document getDocument(MimeMediaType asMimeType)

throws IllegalArgumentException

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 379

380 Chapter 11 A Complete Sample Application

{

// Check that the required elements are present.

if (null != getEmailAddress())

{

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, documentRootElement);

Element element;

element = document.createElement(tagEmailAddress,

getEmailAddress());

document.appendChild(element);

element = document.createElement(tagName, getName());

document.appendChild(element);

return document;

}

else

{

throw new IllegalArgumentException(“Missing email address”);

}

}

/**

* Parses the given document tree for the request.

*

* @param document the object containing the request data.

* @exception IllegalArgumentException if the document is not a chat

* request, as expected.

*/

public void readDocument(TextElement document)

throws IllegalArgumentException

{

if (document.getName().equals(documentRootElement))

{

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

Listing 11.9 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 380

381Creating the Chat Service

if (element.getName().equals(tagEmailAddress))

{

setEmailAddress(element.getTextValue());

continue;

}

if (element.getName().equals(tagName))

{

setName(element.getTextValue());

continue;

}

}

}

else

{

throw new IllegalArgumentException(

“Not a InitiateChatRequest document!”);

}

}

/**

* Returns an XML String representation of the request.

*

* @return the XML String representing this request.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc =

(StructuredTextDocument) getDocument(

new MimeMediaType(mimeType));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

14_2344 Ch 11 5/14/02 11:48 AM Page 381

382 Chapter 11 A Complete Sample Application

The Initiate Chat Response Message
To allow a remote peer to establish a chat session, a peer that wants to grant a
chat session must generate a Pipe Advertisement and send it as part of an
Initiate Chat Response Message to the requesting peer.The XML for the
Initiate Chat Response Message is shown in Listing 11.10.

Listing 11.10 The Initiate Chat Response Message

<?xml version=”1.0” encoding=”UTF-8”?>

<InitiateChatRequest>

<EmailAddress> . . . </EmailAddress>

<Name> . . . </Name>

<jxta:PipeAdvertisement> . . . </jxta:PipeAdvertisement>

</InitiateChatRequest>

The Initiate Chat Response Message provides not only the Pipe
Advertisement required to establish the chat session, but also other information
that the recipient peer can use:

n EmailAddress—A required element containing the email address of the
user approving the request for a chat session.The email address is used as
a unique identifier for the user approving the chat session.

n Name—An optional element containing a display name or common name
for the user approving the chat session.

n jxta:PipeAdvertisement—A required element that contains the Pipe
Advertisement to use to establish the chat session. Note that this element
is actually the root of the Pipe Advertisement XML tree.

When a peer receives an Initiate Chat Response Message, it can use the Pipe
Advertisement with the BidirectionalPipeService class to establish two-way
communications and begin chatting. By using the BidirectionalPipeService,
you avoid having to create your own protocol to handle exchanging the Pipe
Advertisements required to establish two-way communications.You need to
create only one Pipe Advertisement, and the BidirectionalPipeService takes
care of the details of exchanging Pipe Advertisements and binding input and
output pipes.

The Initiate Chat Response Message is abstracted as two classes,
InitiateChatResponseMessage and InitiateChatResponse.The
InitiateChatResponseMessage abstract class defines the majority of the functional-
ity but leaves the implementation of the message rendering and parsing to the
InitiateChatResponse class.The source code for InitiateChatResponseMessage and
InitiateChatResponse is shown in Listings 11.11 and 11.12, respectively.

14_2344 Ch 11 5/14/02 11:48 AM Page 382

383Creating the Chat Service

Listing 11.11 Source Code for InitiateChatResponseMessage.java

package com.newriders.jxta.chapter11.protocol;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.protocol.PipeAdvertisement;

/**

* An abstract class defining a response to a request to begin a chat

* session. This response is responsible for sending a Pipe Advertisement

* in response to a Initiate Chat Request Message to allow a remote peer

* to begin chatting with the local peer.

*/

public abstract class InitiateChatResponseMessage

{

/**

* The email address of the user associated with the local peer.

* Used to map the user to presence information.

*/

private String emailAddress = null;

/**

* A display name to use to represent the user associated with

* the local peer during the chat session.

*/

private String name = null;

/**

* A Pipe Advertisement to use to initiate the chat session. The

* local peer will bind an input pipe to the pipe described by this

* advertisement to set up the two-way chat communication channel

* using the BidirectionalPipeService.

*/

private PipeAdvertisement pipeAdvertisement = null;

/**

* Returns a Document object containing the response’s document tree.

*

* @param asMimeType the desired MIME type for the response

* rendering.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 383

384 Chapter 11 A Complete Sample Application

* @return the Document containing the response’s document

* object tree.

*/

public abstract Document getDocument(MimeMediaType asMimeType);

/**

* Retrieve the email address of the user associated with the

* local peer.

*

* @return the email address used to identify the user.

*/

public String getEmailAddress()

{

return emailAddress;

}

/**

* Retrieve the display name of the user associated with the local peer.

*

* @return the display name used to identify the user during the

* chat session.

*/

public String getName()

{

return name;

}

/**

* Returns the Pipe Advertisement object that a remote peer can use to

* initiate the chat session.

*

* @return the Pipe Advertisement to use for setting up the chat

* session.

*/

public PipeAdvertisement getPipeAdvertisement()

{

return pipeAdvertisement;

}

/**

* Sets the email address of the user associated with the local peer.

Listing 11.11 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 384

385Creating the Chat Service

*

* @param emailAddress the email address used to identify the user.

*/

public void setEmailAddress(String emailAddress)

{

this.emailAddress = emailAddress;

}

/**

* Sets the display name of the user associated with the local peer.

*

* @param name the display name used to identify the user during the

* chat session.

*/

public void setName(String name)

{

this.name = name;

}

/**

* Sets the Pipe Advertisement object that a remote peer can use to

* initiate the chat session.

*

* @param pipeAdvertisement the Pipe Advertisement to use for setting

* up the chat session.

*/

public void setPipeAdvertisement(PipeAdvertisement pipeAdvertisement)

{

this.pipeAdvertisement = pipeAdvertisement;

}

}

Listing 11.12 Source Code for InitiateChatResponse.java

package com.newriders.jxta.chapter11.impl.protocol;

import java.io.InputStream;

import java.io.IOException;

import java.io.StringWriter;

import java.util.Enumeration;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 385

386 Chapter 11 A Complete Sample Application

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.Element;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentUtils;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

import net.jxta.protocol.PipeAdvertisement;

import com.newriders.jxta.chapter11.protocol.InitiateChatResponseMessage;

/**

* An implementation of the InitiateChatResponseMessage abstract class.

* This class is responsible for parsing and formatting the XML document

* used to define a response to a request to initiate a chat session.

*/

public class InitiateChatResponse extends InitiateChatResponseMessage

{

/**

* The root element for the response’s XML document.

*/

private static final String documentRootElement =

“InitiateChatResponse”;

/**

* A convenient constant for the XML MIME type.

*/

private static final String mimeType = “text/xml”;

/**

* The element name for the display name info.

*/

private static final String tagName = “Name”;

/**

* The element name for the email address info.

*/

Listing 11.12 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 386

387Creating the Chat Service

private static final String tagEmailAddress = “EmailAddress”;

/**

* Creates new response object.

*/

public InitiateChatResponse()

{

super();

}

/**

* Creates a new Initiate Chat Response Message by parsing the given

* stream.

*

* @param stream the InputStream source of the response data.

* @exception IOException if the response can’t be parsed from the

* stream.

* @exception IllegalArgumentException thrown if the data does not

* contain a Presence Response Message.

*/

public InitiateChatResponse(InputStream stream) throws IOException,

IllegalArgumentException

{

super();

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(mimeType), stream);

readDocument(document);

}

/**

* Returns a Document object containing the response’s document tree.

*

* @param asMimeType the desired MIME type for the response

* rendering.

* @return the Document containing the response’s document

* object tree.

* @exception IllegalArgumentException thrown if the Pipe

* Advertisement

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 387

388 Chapter 11 A Complete Sample Application

* or the name is null.

*/

public Document getDocument(MimeMediaType asMimeType)

throws IllegalArgumentException

{

// Check that the required elements are present.

if ((null != getPipeAdvertisement()) && (null != getName()))

{

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, documentRootElement);

Element element;

PipeAdvertisement pipeAdv = getPipeAdvertisement();

if (pipeAdv != null)

{

StructuredTextDocument advDoc = (StructuredTextDocument)

pipeAdv.getDocument(asMimeType);

StructuredDocumentUtils.copyElements(

document, document, advDoc);

}

element = document.createElement(tagName, getName());

document.appendChild(element);

element = document.createElement(tagEmailAddress,

getEmailAddress());

document.appendChild(element);

return document;

}

else

{

throw new IllegalArgumentException(“Missing pipe ID or name!”);

}

}

/**

* Parses the given document tree for the response.

*

* @param document the object containing the response data.

Listing 11.12 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 388

389Creating the Chat Service

* @exception IllegalArgumentException if the document is not a

* response, as expected.

*/

public void readDocument(TextElement document)

throws IllegalArgumentException

{

if (document.getName().equals(documentRootElement))

{

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if (element.getName().equals(tagName))

{

setName(element.getTextValue());

continue;

}

if (element.getName().equals(tagEmailAddress))

{

setEmailAddress(element.getTextValue());

continue;

}

if (element.getName().equals(

PipeAdvertisement.getAdvertisementType()))

{

try

{

PipeAdvertisement pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(element);

setPipeAdvertisement(pipeAdv);

}

catch (ClassCastException wrongAdv)

{

throw new IllegalArgumentException(

“Bad pipe advertisement in advertisement”);

}

continue;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 389

390 Chapter 11 A Complete Sample Application

}

}

}

else

{

throw new IllegalArgumentException(

“Not a InitiateChatResponse document!”);

}

}

/**

* Returns an XML String representation of the response.

*

* @return the XML String representing this response.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc = (StructuredTextDocument)

getDocument(new MimeMediaType(mimeType));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

The Chat Message
Although the Chat service doesn’t handle sending and receiving chat messages,
this is probably the most appropriate place to mention the message used to
send a chat message to a remote user.You could create a class to encapsulate
the chat message, but in this simple implementation, only one piece of infor-
mation needs to be sent to a remote user: the chat message text itself.

Listing 11.12 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 390

391Creating the Chat Service

To send a chat message to a remote user after the pipes have been
established, a peer only needs to create a new Message object and populate
a message element named ChatMessage with the chat message text.

The Chat Service
The Chat service abstracts the creation of Initiate Chat Request and Response
Messages and provides a simple interface that a developer can use to send these
messages.As with PresenceService, the ChatService interface shown in Listing
11.13 provides a mechanism for developers to register and unregister listener
objects that can be used to handle the requests and responses.

Listing 11.13 Source Code for ChatService.java

package com.newriders.jxta.chapter11.chat;

import net.jxta.protocol.PipeAdvertisement;

import net.jxta.service.Service;

/**

* An interface for the Chat service, a service that allows peers to

* request and approve chat sessions. This interface defines the operations

* that a developer can expect to use to manipulate the Chat service,

* regardless of which underlying implementation of the service is being

* used.

*/

public interface ChatService extends Service

{

/**

* The module class ID for the Presence class of service.

*/

public static final String refModuleClassID =

“urn:jxta:uuid-F84F9397891240B496D1B5754CCC933105”;

/**

* Add a listener object to the service. When a new Initiate Chat

* Request or Response Message arrives, the service will notify each

* registered listener.

*

* @param listener the listener object to register with the service.

*/

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 391

392 Chapter 11 A Complete Sample Application

public void addListener(ChatListener listener);

/**

* Approve a chat session.

*

* @param pipeAdvertisement the advertisement for the pipe that will

* be used to set up the chat session.

* @param emailAddress the emailAddress of the user associated with

* local peer.

* @param displayName the name of the user associated with the

* local peer.

* @param queryID the query ID to use to send to the Resolver

* Response Message containing the response, allowing the

* remote peer to match the response to an initial request.

*/

public void approveChat(PipeAdvertisement pipeAdvertisement,

String emailAddress, String displayName, int queryID);

/**

* Removes a given listener object from the service. Once removed,

* a listener will no longer be notified when a new Initiate Chat

* Request or Response Message arrives.

*

* @param listener the listener object to unregister.

*/

public boolean removeListener(ChatListener listener);

/**

* Send a request to chat to the peer specified.

*

* @param peerID the Peer ID of the remote peer to request for a chat

* session.

* @param emailAddress the email address of the user associated with

* the local peer.

* @param displayName the display name of the user associated with

* the local peer.

* @param listener the listener to notify when a response to this

* request is received.

*/

public void requestChat(String peerID, String emailAddress,

String displayName, ChatListener listener);

}

Listing 11.13 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 392

393Creating the Chat Service

For this application, we would like the main application to be capable of
determining whether a request to chat should be approved.This allows the
application to ignore a request from a user that isn’t a part of the user’s list
of contacts.To accomplish this, the ChatService delegates the decision of
whether to approve a chat request using the ChatListener interface shown
in Listing 11.14.

Listing 11.14 Source Code for ChatListener.java

package com.newriders.jxta.chapter11.chat;

import com.newriders.jxta.chapter11.protocol.InitiateChatRequestMessage;

import com.newriders.jxta.chapter11.protocol.InitiateChatResponseMessage;

/**

* An interface to encapsulate an object that listens for notification

* from the ChatService of newly arrived requests for a chat session and

* responds to requests for a chat session.

*/

public interface ChatListener

{

/**

* Notify the listener that a chat session has been approved.

*

* @param response the response to the request for a chat session.

*/

public void chatApproved(InitiateChatResponseMessage response);

/**

* Notify the listener that a chat session has been requested.

*

* @param request the object containing the chat session request info.

* @param queryID the query ID from the Resolver Query Message used to

* send the request.

*/

public void chatRequested(InitiateChatRequestMessage request,

int queryID);

}

When the ChatService receives an Initiate Chat Request Message, it notifies
each of the registered ChatListener instance’s chatRequested methods. It is the
responsibility of a listener to approve a request.When the ChatService receives

14_2344 Ch 11 5/14/02 11:48 AM Page 393

394 Chapter 11 A Complete Sample Application

an Initiate Chat Response Message, the registered ChatListener instance’s
chatApproved method handles the response, and uses its contents to begin the
chat session.

For this application, the ChatService implementation shown in Listing 11.15
uses the Resolver service to handle the Initiate Chat Request and Response
Messages.

Listing 11.15 Source Code for ChatServiceImpl.java

package com.newriders.jxta.chapter11.impl.chat;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.util.Hashtable;

import java.util.Vector;

import net.jxta.document.Advertisement;

import net.jxta.exception.DiscardQueryException;

import net.jxta.exception.NoResponseException;

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.ResendQueryException;

import net.jxta.id.ID;

import net.jxta.impl.protocol.ResolverQuery;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.peergroup.PeerGroup;

import net.jxta.pipe.PipeID;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.PipeAdvertisement;

import net.jxta.protocol.ResolverQueryMsg;

import net.jxta.protocol.ResolverResponseMsg;

import net.jxta.resolver.QueryHandler;

import net.jxta.resolver.ResolverService;

import net.jxta.service.Service;

14_2344 Ch 11 5/14/02 11:48 AM Page 394

395Creating the Chat Service

import com.newriders.jxta.chapter11.chat.ChatListener;

import com.newriders.jxta.chapter11.chat.ChatService;

import com.newriders.jxta.chapter11.impl.protocol.InitiateChatRequest;

import com.newriders.jxta.chapter11.impl.protocol.InitiateChatResponse;

/**

* The implementation of the ChatService interface. This service

* builds on top of the Resolver service to provide the functionality

* for requesting and approving a chat session.

*/

public class ChatServiceImpl implements ChatService, QueryHandler

{

/**

* The Module Specification ID for the Chat service.

*/

public static final String refModuleSpecID =

“urn:jxta:uuid-F84F9397891240B496D1B5754CCC9331DFFD”

+ “10CDD5A140A6B8A1BC18CD65582106”;

/**

* The set of listener objects registered with the service

* to handle an approval to start a chat session. These

* listeners are associated with a specific query ID used

* to send a request to start a chat session to a remote user.

*/

private Hashtable approvedListeners = new Hashtable();

/**

* The handler name used to register the Resolver handler.

*/

private String handlerName = null;

/**

* The Module Implementation advertisement for this service.

*/

private Advertisement implAdvertisement = null;

/**

* The local Peer ID.

*/

private String localPeerID = null;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 395

396 Chapter 11 A Complete Sample Application

/**

* The peer group to which the service belongs.

*/

private PeerGroup peerGroup = null;

/**

* A unique query ID that can be used to track a query.

* This is constant across instances of the service on the

* same peer to ensure queryID uniqueness for the peer.

*/

private static int queryID = 0;

/**

* The set of listener objects registered with the service

* to handle requests to start a chat session.

*/

private Vector requestListeners = new Vector();

/**

* The Resolver service used to handle queries and responses.

*/

private ResolverService resolver = null;

/**

* Create a new ChatServiceImpl object.

*/

public ChatServiceImpl()

{

super();

}

/**

* Add a listener object to the service. When a new Initiate Chat

* Request or Response Message arrives, the service will notify each

* registered listener. This method is synchronized to prevent multiple

* threads from altering the set of registered listeners simultaneously.

*

* @param listener the listener object to register with the service.

*/

Listing 11.15 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 396

397Creating the Chat Service

public synchronized void addListener(ChatListener listener)

{

requestListeners.addElement(listener);

}

/**

* Approve a chat session.

*

* @param pipeAdvertisement the advertisement for the pipe that will

* be used to set up the chat session.

* @param emailAddress the emailAddress of the user associated with

* local peer.

* @param displayName the name of the user associated with the local

* peer.

* @param queryID the query ID to use to send to the Resolver Response

* Message containing the response, allowing the remote peer to

* match the response to an initial request.

*/

public void approveChat(PipeAdvertisement pipeAdvertisement,

String emailAddress, String displayName, int queryID)

{

// Make sure that the service has been started.

if (resolver != null)

{

ResolverResponse response;

// Create the response message and populate it with the

// given Pipe ID.

InitiateChatResponse reply = new InitiateChatResponse();

reply.setPipeAdvertisement(pipeAdvertisement);

reply.setEmailAddress(emailAddress);

reply.setName(displayName);

// Wrap the response message in a resolver response message.

response = new ResolverResponse(handlerName, “JXTACRED”,

queryID, reply.toString());

// Send the request using the Resolver service.

resolver.sendResponse(null, response);

}

}

/**

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 397

398 Chapter 11 A Complete Sample Application

* Returns the advertisement for this service. In this case, this is

* the ModuleImplAdvertisement passed in when the service was

* initialized.

*

* @return the advertisement describing this service.

*/

public Advertisement getImplAdvertisement()

{

return implAdvertisement;

}

/**

* Returns an interface used to protect this service.

*

* @return the wrapper object to use to manipulate this service.

*/

public Service getInterface()

{

// We don’t really need to provide an interface object to protect

// this service, so this method simply returns the service itself.

return this;

}

/**

* Initialize the service.

*

* @param group the PeerGroup containing this service.

* @param assignedID the identifier for this service.

* @param implAdv the advertisement specifying this service.

* @exception PeerGroupException is not thrown ever by this

* implementation.

*/

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)

throws PeerGroupException

{

// Save a reference to the group of which that this service is

// a part.

peerGroup = group;

// Use the assigned ID as the Resolver handler name.

handlerName = assignedID.toString();

Listing 11.15 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 398

399Creating the Chat Service

// Save the module’s implementation advertisement.

implAdvertisement = (ModuleImplAdvertisement) implAdv;

// Get the local Peer ID.

localPeerID = group.getPeerID().toString();

}

/**

* Process a Resolver Query Message.

*/

public ResolverResponseMsg processQuery(ResolverQueryMsg query)

throws IOException, NoResponseException, DiscardQueryException,

ResendQueryException

{

ResolverResponse response;

InitiateChatRequest request;

try

{

// Extract the request message.

request = new InitiateChatRequest(

new ByteArrayInputStream((query.getQuery()).getBytes()));

}

catch (Exception e)

{

// Not the expected format of the message.

throw new NoResponseException();

}

// Notify each of the registered listeners.

if (requestListeners.size() > 0)

{

ChatListener listener = null;

for (int i = 0; i < requestListeners.size(); i++)

{

listener = (ChatListener) requestListeners.elementAt(i);

listener.chatRequested(request, query.getQueryId());

}

}

// Throw NoResponseException because this service will not

// produce a InitiateChatResponse. It’s the responsibility of a

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 399

400 Chapter 11 A Complete Sample Application

// ChatListener to decide whether to accept the request to chat

// and inform the requestor of the Pipe ID to use to send chat

// messages.

throw new NoResponseException();

}

/**

* Process a Resolver response message.

*

* @param response a response message to be processed.

*/

public void processResponse(ResolverResponseMsg response)

{

InitiateChatResponse reply;

ChatListener listener = null;

String responseString = response.getResponse();

if (null != responseString)

{

try

{

// Extract the message from the Resolver response.

reply = new InitiateChatResponse(

new ByteArrayInputStream(responseString.getBytes()));

// Notify the listener associated with the response’s

// queryID.

listener = (ChatListener) approvedListeners.get(

new Integer(response.getQueryId()));

if (listener != null)

{

listener.chatApproved(reply);

}

}

catch (Exception e)

{

// This is not the right type of response message, or

// the message is improperly formed. Ignore the exception;

// do nothing with the message.

System.out.println(“Error in response: “ + e);

}

Listing 11.15 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 400

401Creating the Chat Service

}

}

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new Initiate Chat

* Request or Response Message arrives. This method is synchronized to

* prevent multiple threads from altering the set of registered

* listeners simultaneously.

*

* @param listener the listener object to unregister.

*/

public synchronized boolean removeListener(ChatListener listener)

{

return requestListeners.removeElement(listener);

}

/**

* Send a request to chat to the peer specified.

*

* @param peerID the Peer ID of the remote peer to request for a

* chat session.

* @param emailAddress the email address of the user associated

* with the local peer.

* @param displayName the display name of the user associated with

* the local peer.

* @param listener the listener to notify when a response to this

* request is received.

*/

public void requestChat(String peerID, String emailAddress,

String displayName, ChatListener listener)

{

// Make sure that the service has been started.

if (resolver != null)

{

// Create the request object.

String localPeerID = peerGroup.getPeerID().toString();

InitiateChatRequest request = new InitiateChatRequest();

// Configure the request.

request.setEmailAddress(emailAddress);

request.setName(displayName);

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 401

402 Chapter 11 A Complete Sample Application

// Wrap the query in a Resolver Query Message.

ResolverQuery query = new ResolverQuery(handlerName,

“JXTACRED”, localPeerID, request.toString(), queryID++);

// Add the given listener to the set of approved listeners.

// This will be used to ensure that only responses to actual

// queries sent by this service will be passed to the given

// listener.

approvedListeners.put(

new Integer(query.getQueryId()), listener);

// Send the request to the peer using the Resolver service.

resolver.sendQuery(peerID, query);

}

}

/**

* Start the service.

*

* @param args the arguments to the service. Not used.

* @return 0 to indicate the service started.

*/

public int startApp(String[] args)

{

// Now that the service is being started, set the ResolverService

// object to use handle our queries and send responses.

resolver = peerGroup.getResolverService();

// Add ourselves as a handler using the uniquely constructed

// handler name.

resolver.registerHandler(handlerName, this);

return 0;

}

/**

* Stop the service.

*/

Listing 11.15 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 402

403The JXTA Messenger Application

public void stopApp()

{

if (resolver != null)

{

// Unregister ourselves as a listener.

resolver.unregisterHandler(handlerName);

resolver = null;

// Empty the set of request and approved listeners.

requestListeners.removeAllElements();

}

}

}

The JXTA Messenger Application
The JXTA Messenger application is the chat application that the end user will
see and use to conduct a chat session with a remote user.The application itself
consists of two pieces: an application module to show the user interface and a
main application to handle configuring and creating the peer group.

The User Interface
The ExampleService example developed in Chapter 10,“Peer Groups and
Services,” had no user interface of its own to allow a user to interact with the
service.The ExampleServiceTest class provided the user interface and interacted
with the peer group’s ExampleService instance to provide functionality.
Although you could do the same thing in the JXTA Messenger, it would be
better to wrap up the entire user interface as an application that starts when
the peer group starts.

Fortunately, the reference implementation of JXTA provides the capability
to add an application to a peer group’s Module Implementation Advertisement
parameters.When the ExampleService implementation was added to the service
parameters for the peer group created in ExampleServiceTest, it involved code
similar to the code shown in Listing 11.16.

14_2344 Ch 11 5/14/02 11:48 AM Page 403

404 Chapter 11 A Complete Sample Application

Listing 11.16 Adding a Service to the Peer Group Parameters

ModuleImplAdvertisement implAdv =

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

StdPeerGroupParamAdv params = new StdPeerGroupParamAdv(implAdv.getParam());

Hashtable services = params.getServices();

services.put(moduleClassAdv.getModuleClassID(), moduleImplAdv);

params.setServices(services);

implAdv.setParam((StructuredDocument) params.getDocument(

new MimeMediaType(“text”, “xml”)));

This code added the service specified by the moduleImplAdv Module
Implementation Advertisement to the set of parameters in implAdv, the peer
group’s Module Implementation Advertisement.The new service is added to
the parameters’ services Hashtable using the service’s Module Class ID as a key.

In the reference implementation, any class that implements the
net.jxta.platform.Application interface can be added to the peer group’s
Module Implementation Advertisement parameters in a similar fashion. Instead
of adding to the parameters’ set of services, add the application to the parame-
ters’ set of applications.

Hashtable applications = params.getApps ();
. . .
params.setApps(applications);

Only two real differences exist between an application module and a service
module in the reference implementation:

n Which interface the module implements—An application module
implements the net.jxta.platform.Application interface, whereas a service
module implements the net.jxta.service.Service interface. Both inter-
faces extend the net.jxta.platform.Module interface, and only Service adds
methods not found in Module.

n When the module’s startApp method is called—Each of a peer
group’s services has its startApp method called when the peer group,
which is also a module, is initialized using the PeerGroup.init method.
Each of the peer group’s applications has its startApp method called
when the peer group is started using the PeerGroup.startApp method.

So, rather than try to have the main application figure out when the peer
group has started, you should place the user interface in a separate class that
implements the Application interface.That way, the user interface automatically
is notified via its startApp method when the peer group containing the
Presence and Chat services has been started.

14_2344 Ch 11 5/14/02 11:48 AM Page 404

405The JXTA Messenger Application

The BuddyList class, shown in Listing 11.17, handles the main user interface
for the JXTA Messenger.The BuddyList provides a user interface that displays a
list of buddies that the user is monitoring for presence information.

Listing 11.17 Source Code for BuddyList.java

package com.newriders.jxta.chapter11;

import java.util.Enumeration;

import java.io.IOException;

import java.util.Hashtable;

import java.awt.Container;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.net.MalformedURLException;

import java.net.URL;

import java.net.UnknownServiceException;

import javax.swing.BorderFactory;

import javax.swing.ButtonGroup;

import javax.swing.DefaultListModel;

import javax.swing.JCheckBoxMenuItem;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JOptionPane;

import javax.swing.JScrollPane;

import javax.swing.border.Border;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

import net.jxta.document.Advertisement;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 405

406 Chapter 11 A Complete Sample Application

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.ServiceNotFoundException;

import net.jxta.id.ID;

import net.jxta.id.IDFactory;

import net.jxta.impl.util.BidirectionalPipeService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.platform.Application;

import net.jxta.platform.ModuleClassID;

import net.jxta.protocol.PipeAdvertisement;

import com.newriders.jxta.chapter11.chat.ChatListener;

import com.newriders.jxta.chapter11.chat.ChatService;

import com.newriders.jxta.chapter11.impl.protocol.InitiateChatResponse;

import com.newriders.jxta.chapter11.presence.PresenceListener;

import com.newriders.jxta.chapter11.presence.PresenceService;

import com.newriders.jxta.chapter11.protocol.InitiateChatRequestMessage;

import com.newriders.jxta.chapter11.protocol.InitiateChatResponseMessage;

import com.newriders.jxta.chapter11.protocol.PresenceAdvertisement;

/**

* A user interface application to show a buddy list and their current

* status using the Presence service. The application also allows the user

* to initiate a chat session using the Chat service.

*/

public class BuddyList extends JFrame implements Application,

ActionListener, PresenceListener

{

/**

* The Module Class ID for the BuddyList application.

*/

public static final String refModuleClassID =

“urn:jxta:uuid-E340D55F97E141C9B46FB2B108D8C2B705”;

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 406

407The JXTA Messenger Application

/**

* The Module Specification ID for the BuddyList application.

*/

public static final String refModuleSpecID =

“urn:jxta:uuid-E340D55F97E141C9B46FB2B108D8C2B7”

+ “581B0312E66046B6BB96BF6A2EC5F27906”;

/**

* A list to display the set of “approved” buddies and their

* presence status.

*/

private JList buddies = new JList();

/**

* The data model for the list widget.

*/

private DefaultListModel buddiesData = new DefaultListModel();

/**

* The peer group to which the service belongs.

*/

private PeerGroup peerGroup = null;

/**

* The Presence service used to update other users of this user’s

* current presence status.

*/

private PresenceService presence = null;

/**

* The Chat service used to handle requesting chat sessions and

* respond with approvals.

*/

private ChatService chat = null;

/**

* A set of buddy email addresses, indexed by display name.

*/

private Hashtable buddyNames = new Hashtable();

/**

* A set of buddy display names, indexed by email address.

*/

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 407

408 Chapter 11 A Complete Sample Application

private Hashtable buddyEmailAddresses = new Hashtable();

/**

* A set of buddy Peer IDs, indexed by email address.

*/

private Hashtable buddyPeerIDs = new Hashtable();

/**

* The local user’s email address.

*/

private String emailAddress = null;

/**

* The local user’s display name.

*/

private String displayName = null;

/**

* The local user’s current presence status.

*/

private int presenceStatus = PresenceService.OFFLINE;

/**

* A handler to use for handling chat requests and approvals.

*/

private ChatHandler chatHandler = new ChatHandler();

/**

* A simple menu handler to deal with the “Set Name...” menu item.

*/

public class SetNameHandler implements ActionListener

{

/**

* Handles the “Set Name...” menu item.

*

* @param e the event for the menu item.

*/

public void actionPerformed(ActionEvent e)

{

String newDisplayName = JOptionPane.showInputDialog(null,

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 408

409The JXTA Messenger Application

“Enter a new display name :”,

“Set Display Name...”, JOptionPane.QUESTION_MESSAGE);

if ((null != newDisplayName) && (0 < newDisplayName.length()))

{

// Announce change in presence status.

presence.announcePresence(

presenceStatus, emailAddress, newDisplayName);

displayName = newDisplayName;

}

}

}

/**

* A simple menu handler to deal with the “Add Buddy...” menu item.

*/

public class AddBuddyHandler implements ActionListener

{

/**

* Handles the “Add Buddy...” menu item.

*

* @param e the event for the menu item.

*/

public void actionPerformed(ActionEvent e)

{

String buddy = JOptionPane.showInputDialog(null,

“Enter the email address of your buddy:”,

“Add Buddy...”, JOptionPane.QUESTION_MESSAGE);

if ((null != buddy) && (0 < buddy.length()))

{

// Ensure that the buddy isn’t already in our list.

if (null == buddyEmailAddresses.get(buddy))

{

// We should really validate the email address, but

// for simplicity we’ll just add it to the list

// marking the buddy as “offline”. Use the email

// address as the buddy display name until we discover

// presence information.

add(buddy, buddy, PresenceService.OFFLINE);

// Find the presence information for the buddy.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 409

410 Chapter 11 A Complete Sample Application

presence.findPresence(buddy);

}

else

{

JOptionPane.showMessageDialog(null,

“A buddy with that email address already exists!”,

“Buddy Exists!”, JOptionPane.ERROR_MESSAGE);

}

}

}

}

/**

* A handler to deal with the application dialog being closed or the

* “Quit” menu item being activated.

*/

public class QuitHandler extends WindowAdapter implements ActionListener

{

/**

* Handles the “Quit” menu item.

*

* @param e the event for the menu item.

*/

public void actionPerformed(ActionEvent e)

{

quit();

}

/**

* Handles the window’s system Close button.

*

* @param e the event for the window closing.

*/

public void windowClosing(WindowEvent e)

{

quit();

}

/**

* Quits the application.

*/

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 410

411The JXTA Messenger Application

private void quit()

{

// Announce change in presence status.

presenceStatus = PresenceService.OFFLINE;

presence.announcePresence(

presenceStatus, emailAddress, displayName);

System.exit(0);

}

}

/**

* Handles the local user updating presence information.

*/

public class StatusChangeHandler implements ActionListener

{

/**

* Handles the “My Status” submenu items.

*

* @param e the event for the menu item.

*/

public void actionPerformed(ActionEvent e)

{

int newPresenceStatus = PresenceService.OFFLINE;

String presenceString =

((JCheckBoxMenuItem) e.getSource()).getText();

if (presenceString.equals(“Offline”))

{

newPresenceStatus = PresenceService.OFFLINE;

}

else if (presenceString.equals(“Online”))

{

newPresenceStatus = PresenceService.ONLINE;

}

else if (presenceString.equals(“Busy”))

{

newPresenceStatus = PresenceService.BUSY;

}

else if (presenceString.equals(“Away”))

{

newPresenceStatus = PresenceService.AWAY;

}

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 411

412 Chapter 11 A Complete Sample Application

if (newPresenceStatus != presenceStatus)

{

// Announce change in presence status.

presence.announcePresence(

newPresenceStatus, emailAddress, displayName);

presenceStatus = newPresenceStatus;

}

}

}

/**

* A simple handler to deal with spawning a chat window when a chat

* request is approved or for handling incoming chat requests.

*/

public class ChatHandler implements ChatListener

{

/**

* Handles an approval for a previously generated chat request.

* Displays the ChatDialog and handles establishing the two-

* way communication channel.

*

* @param response the response object containing the Pipe

* Advertisement to use to establish two-way communication.

*/

public void chatApproved(InitiateChatResponseMessage response)

{

ChatDialog chatDialog = null;

// Extract the Pipe Advertisement from the chat response.

PipeAdvertisement pipeAdv = response.getPipeAdvertisement();

if (null != pipeAdv)

{

// Create a bidirectional pipe.

BidirectionalPipeService pipeService =

new BidirectionalPipeService(peerGroup);

BidirectionalPipeService.Pipe pipe = null;

String buddyName = null;

while (null == pipe)

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 412

413The JXTA Messenger Application

{

// We just loop here.

try

{

pipe = pipeService.connect(pipeAdv, 120000);

}

catch (IOException e)

{

// Do nothing.

System.out.println(“Connect error:” + e);

}

}

// Get the buddy’s display name.

buddyName = response.getName();

if (buddyName == null)

{

buddyName = response.getEmailAddress();

}

// Create the conversation GUI, and show it.

chatDialog = new ChatDialog(buddyName, displayName,

peerGroup.getPipeService(), pipe.getInputPipe(),

pipe.getOutputPipe());

chatDialog.show();

}

else

{

JOptionPane.showMessageDialog(null,

“Buddy’s reply is missing pipe advertisement!”,

“Unable To Chat!”, JOptionPane.ERROR_MESSAGE);

}

}

/**

* Handles an incoming request for a chat session. Checks that

* the incoming request comes from a known buddy and responds

* with an approval message. Also prepares two-way communications

* and the chat user interface.

*

* @param request the request for a chat session.

* @param queryID the query ID to be used to send a response

* using the Resolver service.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 413

414 Chapter 11 A Complete Sample Application

*/

public void chatRequested(InitiateChatRequestMessage request,

int queryID)

{

String buddyEmailAddress = request.getEmailAddress();

// Check who is making the request against the list of

// approved chat buddies.

if (null != buddyEmailAddresses.get(buddyEmailAddress))

{

ChatDialog chatDialog = null;

String buddyName = null;

// If the request is part of the approved buddies, then

// approve the chat request.

BidirectionalPipeService pipeService =

new BidirectionalPipeService(peerGroup);

BidirectionalPipeService.Pipe pipe = null;

// Create an accept pipe to use to create an input pipe and

// listen for connections.

try

{

BidirectionalPipeService.AcceptPipe acceptPipe =

pipeService.bind(“JXTA Messenger Pipe”);

// Extract the Pipe Advertisement and the Pipe ID.

PipeAdvertisement pipeAdv =

acceptPipe.getAdvertisement();

// Send the approval response.

chat.approveChat(pipeAdv, emailAddress,

displayName, queryID);

// “Accept” a connection, meaning set up the input pipe

// and listen for messages. Set this object as the

// MessageListener so that we can handle incoming

// messages without having to spawn a thread to call

// waitForMessage on the input pipe.

while (null == pipe)

{

// We just loop here.

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 414

415The JXTA Messenger Application

try

{

pipe = acceptPipe.accept(1200000);

}

catch (InterruptedException e)

{

// Do nothing.

System.out.println(“Interrupted: “ + e);

}

}

// Get the buddy’s display name.

buddyName = request.getName();

if (buddyName == null)

{

buddyName = request.getEmailAddress();

}

// Create the conversation GUI.

chatDialog = new ChatDialog(buddyName, displayName,

peerGroup.getPipeService(), pipe.getInputPipe(),

pipe.getOutputPipe());

}

catch (IOException e2)

{

System.out.println(“Error in chatRequested: “ + e2);

}

}

}

}

/**

* Creates a new BuddyList object.

*/

public BuddyList()

{

super(“JXTA Messenger”);

}

/**

* Handles the user interface event used to trigger

* a chat session with a buddy from the list.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 415

416 Chapter 11 A Complete Sample Application

*

* @param e the event being handled.

*/

public void actionPerformed(ActionEvent e)

{

if (null != chat)

{

if (-1 != buddies.getSelectedIndex())

{

String buddyEmailAddress = null;

String peerID = null;

String buddyName =

(String) buddiesData.get(buddies.getSelectedIndex());

// Extract the actual buddy name (without the

// presence string).

buddyName = buddyName.substring(0, buddyName.indexOf(“ (“));

// Figure out the email address and Peer ID.

buddyEmailAddress = (String) buddyNames.get(buddyName);

peerID = (String) buddyPeerIDs.get(buddyEmailAddress);

if ((null != buddyEmailAddress) && (null != peerID))

{

// It would be best to time out due to lack of approval

// for chat session, but for simplicity we’ll just

// hope that the request gets through. In a full-fledged

// application, it would be better to time out and retry.

chat.requestChat(peerID, emailAddress, displayName,

chatHandler);

}

else

{

JOptionPane.showMessageDialog(null,

“Could not find buddy!”, “Unable To Find Buddy”,

JOptionPane.ERROR_MESSAGE);

}

}

else

{

JOptionPane.showMessageDialog(null,

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 416

417The JXTA Messenger Application

“No buddy selected!”, “Select A Buddy First!”,

JOptionPane.ERROR_MESSAGE);

}

}

}

/**

* Add a buddy to the list of buddies.

*

* @param buddyDisplayName the display name for the buddy.

* @param buddyEmailAddress the email address for the buddy.

* @param status the initial presence status for the buddy.

*/

public void add(String buddyDisplayName, String buddyEmailAddress,

int status)

{

String buddyStatus;

buddyNames.put(buddyDisplayName, buddyEmailAddress);

buddyEmailAddresses.put(buddyEmailAddress, buddyDisplayName);

// Construct the list entry from both the displayName and

// the current status.

buddyStatus = buddyDisplayName + “ “;

switch (status)

{

case PresenceService.OFFLINE:

{

buddyStatus += “(Offline)”;

break;

}

case PresenceService.ONLINE:

{

buddyStatus += “(Online)”;

break;

}

case PresenceService.BUSY:

{

buddyStatus += “(Busy)”;

break;

}

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 417

418 Chapter 11 A Complete Sample Application

case PresenceService.AWAY:

{

buddyStatus += “(Away)”;

break;

}

default:

{

buddyStatus += “(Offline)”;

break;

}

}

buddiesData.addElement(buddyStatus);

}

/**

* Initialize the BuddyList application for the peer group.

*

* @param group the peer group containing this application.

* @param ID the assigned ID for the application.

* @param implAdv the Module Implementation Advertisement for

* the BuddyList application.

* @exception PeerGroupException never thrown in this implementation.

*/

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)

throws PeerGroupException

{

this.peerGroup = group;

// Initialize the user interface for the buddy list.

initializeUserInterface();

}

/**

* Initialize the menu for the BuddyList user interface.

*/

public JMenuBar initializeMenu()

{

JMenuBar menuBar = new JMenuBar();

JMenu actionsMenu = new JMenu(“Actions”);

JMenu myStatusMenuItem = new JMenu(“My Status”);

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 418

419The JXTA Messenger Application

JCheckBoxMenuItem offline = new JCheckBoxMenuItem(“Offline”);

JCheckBoxMenuItem online = new JCheckBoxMenuItem(“Online”, true);

JCheckBoxMenuItem busy = new JCheckBoxMenuItem(“Busy”);

JCheckBoxMenuItem away = new JCheckBoxMenuItem(“Away”);

JMenuItem addBuddyMenuItem = new JMenuItem(“Add Buddy...”);

JMenuItem chatBuddyMenuItem = new JMenuItem(“Chat With Buddy...”);

JMenuItem setNameMenuItem = new JMenuItem(“Set Name...”);

JMenuItem quitMenuItem = new JMenuItem(“Quit”);

ButtonGroup group = new ButtonGroup();

// Configure the status menu.

myStatusMenuItem.add(offline);

group.add(offline);

myStatusMenuItem.add(online);

group.add(online);

myStatusMenuItem.add(busy);

group.add(busy);

myStatusMenuItem.add(away);

group.add(away);

// Configure the listeners for the menu items.

addBuddyMenuItem.addActionListener(new AddBuddyHandler());

chatBuddyMenuItem.addActionListener(this);

setNameMenuItem.addActionListener(new SetNameHandler());

quitMenuItem.addActionListener(new QuitHandler());

offline.addActionListener(new StatusChangeHandler());

online.addActionListener(new StatusChangeHandler());

busy.addActionListener(new StatusChangeHandler());

away.addActionListener(new StatusChangeHandler());

// Add the menu items to the menus.

actionsMenu.add(myStatusMenuItem);

actionsMenu.add(addBuddyMenuItem);

actionsMenu.add(chatBuddyMenuItem);

actionsMenu.add(setNameMenuItem);

actionsMenu.addSeparator();

actionsMenu.add(quitMenuItem);

// Add the menus to the menu bar.

menuBar.add(actionsMenu);

return menuBar;

}

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 419

420 Chapter 11 A Complete Sample Application

/**

* Initialize the main user interface for the BuddyList application.

*/

public void initializeUserInterface()

{

Container framePanel = getContentPane();

// Set a border for the list of buddies.

Border border = BorderFactory.createTitledBorder(“Buddies”);

// Configure menu.

setJMenuBar(initializeMenu());

// Add the initialized inner panel to the frame panel.

framePanel.add(buddies);

// Pack the frame, preparing it for display.

pack();

setSize(200, 300);

// Add a listener to handle quitting the application when

// the window is closed using the system menu.

addWindowListener(new QuitHandler());

// Add ourselves as a listener to the list, and set

// the model to supply the data for the list.

buddies.setModel(buddiesData);

}

/**

* Handles updating the user interface when new presence

* information arrives.

*

* @param presenceInfo the Presence Advertisement containing the

* newly arrived presence information.

*/

public void presenceUpdated(PresenceAdvertisement presenceInfo)

{

String buddyName = null;

// First check that this buddy is someone we’re interested

// in displaying presence information for.

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 420

421The JXTA Messenger Application

buddyName =

(String) buddyEmailAddresses.get(

presenceInfo.getEmailAddress());

if (null != buddyName)

{

// Add the Peer ID to our Hashtable of Peer IDs.

buddyPeerIDs.put(presenceInfo.getEmailAddress(),

presenceInfo.getPeerID());

// Update the list entry.

for (int i = 0; i < buddiesData.getSize(); i++)

{

String currentBuddy = (String) buddiesData.get(i);

// See if this is the right buddy to update.

if (currentBuddy.indexOf(buddyName) != -1)

{

// Update the buddy name (in case it changed).

String buddyDisplayName = presenceInfo.getName();

String buddyEmailAddress =

presenceInfo.getEmailAddress();

if (null == buddyDisplayName)

{

buddyDisplayName = buddyEmailAddress;

}

// Fix hashtables to reflect changes in name.

buddyNames.remove(buddyName);

buddyNames.put(buddyDisplayName, buddyEmailAddress);

buddyEmailAddresses.remove(buddyEmailAddress);

buddyEmailAddresses.put(buddyEmailAddress,

buddyDisplayName);

// Update the list element to reflect the

// presence change.

buddyDisplayName += “ “;

switch (presenceInfo.getPresenceStatus())

{

case PresenceService.OFFLINE:

{

buddyDisplayName += “(Offline)”;

break;

}

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 421

422 Chapter 11 A Complete Sample Application

case PresenceService.ONLINE:

{

buddyDisplayName += “(Online)”;

break;

}

case PresenceService.BUSY:

{

buddyDisplayName += “(Busy)”;

break;

}

case PresenceService.AWAY:

{

buddyDisplayName += “(Away)”;

break;

}

default:

{

buddyDisplayName += “(Offline)”;

break;

}

}

buddiesData.set(i, buddyDisplayName);

}

}

}

}

/**

* Starts the BuddyList application.

*

* @param args the arguments to use to start the application.

* @return a status value.

*/

public int startApp(String[] args)

{

int result = 0;

try

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 422

423The JXTA Messenger Application

{

// Find the Presence service on the peer group.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((PresenceService.refModuleClassID)));

presence = (PresenceService) peerGroup.lookupService(classID);

// Register ourselves as a presence listener.

presence.addListener(this);

// Find the Chat service on the peer group.

classID = (ModuleClassID) IDFactory.fromURL(

new URL((ChatService.refModuleClassID)));

chat = (ChatService) peerGroup.lookupService(classID);

// Register ourselves as a chat request listener.

chat.addListener(chatHandler);

// Prompt the user to enter his own user information.

do

{

emailAddress = JOptionPane.showInputDialog(null,

“What is your email address?”,

“Configuration: Step 1 of 2”,

JOptionPane.QUESTION_MESSAGE);

} while (null == emailAddress);

do

{

displayName = JOptionPane.showInputDialog(null,

“Enter a display name:”,

“Configuration: Step 2 of 2”,

JOptionPane.QUESTION_MESSAGE);

} while (null == displayName);

// Announce that we are online.

presenceStatus = PresenceService.ONLINE;

presence.announcePresence(presenceStatus, emailAddress,

displayName);

// Show the user interface.

initializeUserInterface();

setVisible(true);

}

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 423

424 Chapter 11 A Complete Sample Application

catch (Exception e)

{

result = 1;

}

return result;

}

/**

* Stop the application.

*/

public void stopApp()

{

if (null != presence)

{

// Remove ourselves as a presence listener.

presence.removeListener(this);

presence = null;

}

if (null != chat)

{

// Remove ourselves as a chat request listener.

chat.removeListener(chatHandler);

chat = null;

}

// Hide the user interface.

setVisible(false);

}

}

The BuddyList class implements the PresenceListener interface, allowing it to
update the user interface as updated presence information is received.The
BuddyList class also implements the ChatListener interface so that it can ensure
that requests to start a chat session are approved only for users who are in the
user’s list of buddies.

Listing 11.17 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 424

425The JXTA Messenger Application

The BuddyList class relies on a separate class to handle presenting a user
interface for a chat session.The ChatDialog class, shown in Listing 11.18, is
displayed by BuddyList when a chat session has been successfully established.

Listing 11.18 Source Code for ChatDialog.java

package com.newriders.jxta.chapter11;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.io.IOException;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.BorderFactory;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import net.jxta.endpoint.Message;

import net.jxta.pipe.InputPipe;

import net.jxta.pipe.OutputPipe;

import net.jxta.pipe.PipeService;

/**

* A class to display the chat session user interface and handle the pipes

* used to send and receive chat messages.

*/

public class ChatDialog extends JFrame implements ActionListener,

KeyListener

{

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 425

426 Chapter 11 A Complete Sample Application

/**

* The text area used to enter a chat message to send to a remote user.

*/

private JTextArea message = new JTextArea(3, 20);

/**

* The text area to show the incoming and outgoing chat messages in

* the conversation.

*/

private JTextArea conversation = new JTextArea(12, 20);

/**

* The input pipe being used to receive chat messages.

*/

private InputPipe inputPipe = null;

/**

* The output pipe being used to send chat messages.

*/

private OutputPipe outputPipe = null;

/**

* The name of the remote buddy in the conversation.

*/

private String buddyName = null;

/**

* The name of the local user in the conversation.

*/

private String displayName = null;

/**

* The pipe service to use to create Message objects.

*/

private PipeService pipe = null;

/**

* A thread to handle receiving messages and updating the user

* interface.

*/

private MessageReader reader = null;

Listing 11.18 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 426

427The JXTA Messenger Application

/**

* A handler class to deal with closing the window.

*/

public class WindowHandler extends WindowAdapter

{

/**

* Handles the window closing.

*

* @param e the object with details of the window event.

*/

public void windowClosing(WindowEvent e)

{

if (reader != null)

{

reader.stop();

}

setVisible(false);

}

}

/**

* A simple thread to handle reading messages from the input pipe and

* updating the user interface.

*/

public class MessageReader extends Thread

{

/**

* The main thread loop.

*/

public void run()

{

while (true)

{

try

{

Message messageObj = inputPipe.waitForMessage();

// Make sure that the dialog is visible.

setVisible(true);

// Extract the Chat Message.

StringBuffer chatMessage =

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 427

428 Chapter 11 A Complete Sample Application

new StringBuffer(

messageObj.getString(“ChatMessage”));

// Update the user interface.

StringBuffer conversationText =

new StringBuffer(conversation.getText());

conversationText.append(“\n”);

conversationText.append(buddyName).append(“> “);

conversationText.append(chatMessage);

conversation.setText(conversationText.toString());

}

catch (Exception e)

{

System.out.println(“Error...: “ + e);

}

}

}

}

/**

* Create a new window to handle a conversation with a remote user.

*

* @param buddyName the display name for the remote user in the

* chat session.

* @param displayName the display name for the local user in the

* chat session.

* @param pipe the pipe service to use to create messages.

* @param inputPipe the pipe to use to receive messages.

* @param outputPipe the pipe to use to send messages.

*/

public ChatDialog(String buddyName, String displayName,

PipeService pipe, InputPipe inputPipe, OutputPipe outputPipe)

{

super();

this.pipe = pipe;

this.inputPipe = inputPipe;

this.outputPipe = outputPipe;

this.buddyName = buddyName;

this.displayName = displayName;

// Initialize the user interface.

Listing 11.18 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 428

429The JXTA Messenger Application

initializeUserInterface();

// Set the title of the dialog.

setTitle(“Conversation - “ + buddyName);

reader = new MessageReader();

reader.start();

}

/**

* Handles the “Send” button.

*

* @param e the event corresponding to the button being pressed.

*/

public void actionPerformed(ActionEvent e)

{

sendMessage();

}

/**

* Initializes the dialog’s user interface.

*/

public void initializeUserInterface()

{

Container framePanel = getContentPane();

JPanel conversationPanel = new JPanel();

JPanel sendPanel = new JPanel();

JButton sendButton = new JButton(“Send!”);

GridBagLayout layout = new GridBagLayout();

JScrollPane messagePane = new JScrollPane(message);

GridBagConstraints constraints = new GridBagConstraints();

constraints.gridx = 0;

constraints.gridy = 0;

constraints.gridwidth = 1;

constraints.gridheight = 1;

constraints.anchor = GridBagConstraints.WEST;

constraints.weightx = 1;

constraints.weighty = 1;

constraints.fill = GridBagConstraints.HORIZONTAL;

layout.addLayoutComponent(messagePane, constraints);

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 429

430 Chapter 11 A Complete Sample Application

constraints.gridx = 1;

constraints.gridy = 0;

constraints.gridwidth = 1;

constraints.gridheight = 1;

constraints.anchor = GridBagConstraints.WEST;

constraints.weightx = 0.1;

constraints.weighty = 1;

constraints.fill = GridBagConstraints.BOTH;

layout.addLayoutComponent(sendButton, constraints);

sendPanel.setLayout(layout);

sendPanel.setBorder(BorderFactory.createTitledBorder(

“Compose A Message:”));

sendPanel.add(messagePane);

sendPanel.add(sendButton);

conversationPanel.setLayout(new BorderLayout());

conversationPanel.setBorder(

BorderFactory.createTitledBorder(“Conversation:”));

conversationPanel.add(new JScrollPane(conversation),

BorderLayout.CENTER);

conversation.setEditable(false);

constraints.gridx = 0;

constraints.gridy = 0;

constraints.gridwidth = 1;

constraints.gridheight = 1;

constraints.anchor = GridBagConstraints.NORTH;

constraints.weightx = 1;

constraints.weighty = 1;

constraints.fill = GridBagConstraints.BOTH;

layout.addLayoutComponent(conversationPanel, constraints);

constraints.gridx = 0;

constraints.gridy = 1;

constraints.gridwidth = 1;

constraints.gridheight = 1;

constraints.anchor = GridBagConstraints.NORTH;

constraints.weightx = 1;

constraints.weighty = 0;

constraints.fill = GridBagConstraints.BOTH;

layout.addLayoutComponent(sendPanel, constraints);

Listing 11.18 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 430

431The JXTA Messenger Application

framePanel.setLayout(layout);

framePanel.add(conversationPanel);

framePanel.add(sendPanel);

sendButton.addActionListener(this);

message.addKeyListener(this);

pack();

}

/**

* Invoked when a key has been pressed.

*

* @param e the event describing the key event.

*/

public void keyPressed(KeyEvent e)

{

// Do nothing. Only need keyReleased method from KeyListener.

}

/**

* Invoked when a key has been released.

*

* @param e the event describing the key event.

*/

public void keyReleased(KeyEvent e)

{

// Handle the user pressing Return in the message composition

// text area.

if (KeyEvent.VK_ENTER == e.getKeyCode())

{

sendMessage();

}

}

/**

* Invoked when a key has been typed.

*

* @param e the event describing the key event.

*/

public void keyTyped(KeyEvent e)

{

// Do nothing. Only need keyReleased method from KeyListener.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 431

432 Chapter 11 A Complete Sample Application

}

/**

* Send the message in the message composition text area to the

* remote user.

*/

public void sendMessage()

{

StringBuffer conversationText =

new StringBuffer(conversation.getText());

String messageString = message.getText();

// Make sure that there is something to send!

if ((null != messageString) && (0 < messageString.length()))

{

// Create a new message object.

Message messageObj = pipe.createMessage();

// Send the message using the output pipe.

messageObj.setString(“ChatMessage”, messageString);

// Send the message.

try

{

outputPipe.send(messageObj);

}

catch (IOException e2)

{

System.out.println(“Error sending...” + e2);

}

// Update the user interface.

conversationText.append(“\n”);

conversationText.append(displayName).append(“> “);

conversationText.append(messageString);

conversation.setText(conversationText.toString());

message.setText(“”);

}

}

}

Listing 11.18 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 432

433The JXTA Messenger Application

The ChatDialog user interface enables a user to send a message to the remote
user and view a history of the chat session.The ChatDialog class is also respon-
sible for managing the input pipe used to send messages and the output pipe
used to receive messages.

The Main Application
Like the ExampleServiceTest class in Chapter 10, the JxtaMessenger class shown
in Listing 11.19 is responsible for generating the necessary advertisements for
the Chat and Presence services and the BuddyList application, and for creating
the peer group.

Listing 11.19 Source Code for JxtaMessenger.java

package com.newriders.jxta.chapter11;

import java.util.Hashtable;

import java.net.MalformedURLException;

import java.net.UnknownServiceException;

import java.net.URL;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.IDFactory;

import net.jxta.impl.peergroup.StdPeerGroupParamAdv;

import net.jxta.impl.protocol.EndpointAdv;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.platform.ModuleClassID;

import net.jxta.platform.ModuleSpecID;

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 433

434 Chapter 11 A Complete Sample Application

import net.jxta.protocol.ModuleClassAdvertisement;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.ModuleSpecAdvertisement;

import net.jxta.protocol.PeerGroupAdvertisement;

import com.newriders.jxta.chapter11.chat.ChatService;

import com.newriders.jxta.chapter11.impl.chat.ChatServiceImpl;

import com.newriders.jxta.chapter11.impl.presence.PresenceServiceImpl;

import com.newriders.jxta.chapter11.impl.protocol.PresenceAdv;

import com.newriders.jxta.chapter11.presence.PresenceService;

import com.newriders.jxta.chapter11.protocol.PresenceAdvertisement;

/**

* The main class responsible for creating the chat peer group and starting

* the Chat and Presence services and the BuddyList application.

*/

public class JxtaMessenger

{

/**

* The Peer Group ID for the chat group.

*/

private static final String refPeerGroupID =

“urn:jxta:uuid-68B8A7A691684F9C9E05971D66D78ED602”;

/**

* The Module Specification ID for the peer group’s Module

* Implementation Advertisement.

*/

private static final String refPeerGroupSpec =

“urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000019E2”

+ “DDBBCE5FE4957A139B0ECE8DEB46D06”;

/**

* The new group created by the application.

*/

private PeerGroup newGroup = null;

Listing 11.19 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 434

435The JXTA Messenger Application

/**

* The Net Peer Group for the application.

*/

private PeerGroup netPeerGroup = null;

/**

* Create the main application class.

*/

public JxtaMessenger()

{

super();

}

/**

* Creates a Module Class Advertisement using the given parameters.

*

* @param moduleClassID the Module Class ID for the advertisement.

* @param name the symbolic name of the advertisement.

* @param description the description of the advertisement.

* @exception UnknownServiceException if the moduleClassID string

* is malformed.

* @exception MalformedURLException if the moduleClassID string

* is malformed.

*/

private ModuleClassAdvertisement createModuleClassAdv(

String moduleClassID, String name, String description)

throws UnknownServiceException, MalformedURLException

{

// Create the class ID from the refModuleClassID string.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((moduleClassID)));

// Create the Module Class Advertisement.

ModuleClassAdvertisement moduleClassAdv =

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

// Configure the Module Class Advertisement.

moduleClassAdv.setDescription(description);

moduleClassAdv.setModuleClassID(classID);

moduleClassAdv.setName(name);

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 435

436 Chapter 11 A Complete Sample Application

// Return the advertisement to the caller.

return moduleClassAdv;

}

/**

* Creates a Module Implementation Advertisement for the service using

* the specification ID in the passed in ModuleSpecAdvertisement

* advertisement. Use the given ModuleImplAdvertisement to create the

* compatibility element of the Module Implementation Advertisement.

*

* @param groupImpl the ModuleImplAdvertisement of the parent

* peer group.

* @param moduleSpecAdv the source of the specification ID.

* @param description of the module implementation.

* @param code the fully qualified name of the module

* implementation’s class.

* @return the generated Module Implementation Advertisement.

*/

private ModuleImplAdvertisement createModuleImplAdv(

ModuleImplAdvertisement groupImpl,

ModuleSpecAdvertisement moduleSpecAdv,

String description, String code)

{

// Get the specification ID from the passed advertisement.

ModuleSpecID specID = moduleSpecAdv.getModuleSpecID();

// Create the Module Implementation Advertisement.

ModuleImplAdvertisement moduleImplAdv =

(ModuleImplAdvertisement) AdvertisementFactory.newAdvertisement(

ModuleImplAdvertisement.getAdvertisementType());

// Configure the Module Implementation Advertisement.

moduleImplAdv.setCode(code);

moduleImplAdv.setCompat(groupImpl.getCompat());

moduleImplAdv.setDescription(description);

moduleImplAdv.setModuleSpecID(specID);

moduleImplAdv.setProvider(“Brendon J. Wilson”);

// Return the advertisement to the caller.

return moduleImplAdv;

}

Listing 11.19 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 436

437The JXTA Messenger Application

/**

* Creates a Module Specification Advertisement using the

* given parameters.

*

* @param moduleSpecID the Module Specification ID for

* the advertisement.

* @param name the symbolic name of the advertisement.

* @param description the description of the advertisement.

* @exception UnknownServiceException if the moduleSpecID string

* is malformed.

* @exception MalformedURLException if the moduleSpecID string

* is malformed.

*/

private ModuleSpecAdvertisement createModuleSpecAdv(String moduleSpecID,

String name, String description)

throws UnknownServiceException, MalformedURLException

{

// Create the specification ID from the refModuleSpecID string.

ModuleSpecID specID = (ModuleSpecID) IDFactory.fromURL(

new URL((moduleSpecID)));

// Create the Module Specification Advertisement.

ModuleSpecAdvertisement moduleSpecAdv =

(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

// Configure the Module Specification Advertisement.

moduleSpecAdv.setCreator(“Brendon J. Wilson”);

moduleSpecAdv.setModuleSpecID(specID);

moduleSpecAdv.setDescription(description);

moduleSpecAdv.setName(name);

moduleSpecAdv.setSpecURI(

“http://www.brendonwilson.com/projects/jxta”);

moduleSpecAdv.setVersion(“1.0”);

// Return the advertisement to the caller.

return moduleSpecAdv;

}

/**

* Creates a peer group and configures the ChatService and

* PresenceService implementations to run as peer group services,

* and configures the BuddyList as a peer group application.

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 437

438 Chapter 11 A Complete Sample Application

*

* @exception Exception, PeerGroupException if there is a problem

* while creating the peer group or the service

* advertisements.

*/

public void createPeerGroup() throws Exception, PeerGroupException

{

// The name and description for the peer group.

String name = “JXTA Messenger Group”;

String description =

“A peer group for the Chapter 11 example application.”;

// The Discovery service to use to publish the module and peer

// group advertisements.

DiscoveryService discovery = netPeerGroup.getDiscoveryService();

ModuleImplAdvertisement implAdv =

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

// Create the module advertisements for the Presence service.

ModuleClassAdvertisement presenceClassAdv = createModuleClassAdv(

PresenceService.refModuleClassID, “Presence Service”,

“A service to provide presence information.”);

ModuleSpecAdvertisement presenceSpecAdv = createModuleSpecAdv(

PresenceServiceImpl.refModuleSpecID, “Presence Service”,

“A Presence service specification”);

ModuleImplAdvertisement presenceImplAdv = createModuleImplAdv(

implAdv, presenceSpecAdv,

“The reference Presence service implementation”,

“com.newriders.jxta.chapter11.impl.presence.”

+ “PresenceServiceImpl”);

// Create the module advertisements for the Chat service.

ModuleClassAdvertisement chatClassAdv = createModuleClassAdv(

ChatService.refModuleClassID, “Chat Service”,

“A service to provide chat capabilities.”);

ModuleSpecAdvertisement chatSpecAdv = createModuleSpecAdv(

ChatServiceImpl.refModuleSpecID, “Chat Service”,

“A Chat service specification”);

ModuleImplAdvertisement chatImplAdv = createModuleImplAdv(

implAdv, chatSpecAdv,

“The reference Chat service implementation”,

Listing 11.19 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 438

439The JXTA Messenger Application

“com.newriders.jxta.chapter11.impl.chat.ChatServiceImpl”);

// Create the module advertisements for the BuddyList application.

ModuleClassAdvertisement appClassAdv = createModuleClassAdv(

BuddyList.refModuleClassID , “BuddyList Application”,

“An application providing a simple chat application.”);

ModuleSpecAdvertisement appSpecAdv = createModuleSpecAdv(

BuddyList.refModuleSpecID, “BuddyList Application”,

“The BuddyList application specification”);

ModuleImplAdvertisement appImplAdv = createModuleImplAdv(

implAdv, appSpecAdv ,

“The reference BuddyList application implementation”,

“com.newriders.jxta.chapter11.BuddyList”);

// Get the parameters for the peer group’s Module Implementation

// Advertisement to which we will add our service.

StdPeerGroupParamAdv params =

new StdPeerGroupParamAdv(implAdv.getParam());

// Get the services from the parameters.

Hashtable services = params.getServices();

// Add the Chat and Presence services to the set of services.

services.put(presenceClassAdv.getModuleClassID(), presenceImplAdv);

services.put(chatClassAdv.getModuleClassID(), chatImplAdv);

// Set the services on the parameters.

params.setServices(services);

// Replace the applications in the parameters.

Hashtable applications = new Hashtable();

// Add the BuddyList to the applications.

applications.put(appClassAdv.getModuleClassID(), appImplAdv);

// Set the applications on the parameters.

params.setApps(applications);

// Set the parameters on the implementation advertisement.

implAdv.setParam((StructuredDocument) params.getDocument(

new MimeMediaType(“text”, “xml”)));

// VERY IMPORTANT! You must change the module specification ID for

continues

14_2344 Ch 11 5/14/02 11:48 AM Page 439

440 Chapter 11 A Complete Sample Application

// the implementation advertisement. If you don’t, the new peer

// group’s module specification ID will still point to the old

// specification, and the new service will not be loaded.

implAdv.setModuleSpecID((ModuleSpecID) IDFactory.fromURL(

new URL(refPeerGroupSpec)));

// Publish the Presence module class and spec advertisements.

discovery.publish(presenceClassAdv, DiscoveryService.ADV);

discovery.remotePublish(presenceClassAdv, DiscoveryService.ADV);

discovery.publish(presenceSpecAdv, DiscoveryService.ADV);

discovery.remotePublish(presenceSpecAdv, DiscoveryService.ADV);

// Publish the Presence module class and spec advertisements.

discovery.publish(chatClassAdv, DiscoveryService.ADV);

discovery.remotePublish(chatClassAdv, DiscoveryService.ADV);

discovery.publish(chatSpecAdv, DiscoveryService.ADV);

discovery.remotePublish(chatSpecAdv, DiscoveryService.ADV);

// Publish the Peer Group implementation advertisement.

discovery.publish(implAdv, DiscoveryService.ADV);

discovery.remotePublish(implAdv, DiscoveryService.ADV);

// Create the Peer Group ID.

PeerGroupID groupID = (PeerGroupID) IDFactory.fromURL(

new URL((refPeerGroupID)));;

// Create the new group using the group ID, advertisement, name,

// and description.

newGroup = netPeerGroup.newGroup(groupID, implAdv, name,

description);

// Need to publish the group remotely only because newGroup()

// handles publishing to the local peer.

PeerGroupAdvertisement groupAdv =

newGroup.getPeerGroupAdvertisement();

discovery.remotePublish(groupAdv, DiscoveryService.GROUP);

// Start the peer group’s applications.

newGroup.startApp(null);

}

/**

* Starts the JXTA platform.

Listing 11.19 Continued

14_2344 Ch 11 5/14/02 11:48 AM Page 440

441The JXTA Messenger Application

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Starts the application.

* @param args an array of command-line arguments

*/

public static void main(String[] args)

{

JxtaMessenger messenger = new JxtaMessenger();

try

{

// Initialize the JXTA platform.

messenger.initializeJXTA();

// Create the group.

messenger.createPeerGroup();

}

catch (Exception e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

}

}

The JxtaMessenger’s createPeerGroup does the majority of the work, generating
the Module Implementation Advertisement for the peer group and populating
it with the Module Implementation Advertisements for each of the two ser-
vices and the application.The required Module Class IDs and Module
Specification IDs were generated using the GenerateID application developed in
Chapter 10 and were stored as static variables in ChatService, ChatServiceImpl,
PresenceService, PresenceServiceImpl, and BuddyList for convenience.

14_2344 Ch 11 5/14/02 11:48 AM Page 441

442 Chapter 11 A Complete Sample Application

Running JXTA Messenger
After all the classes have been compiled, you should be able to run the JXTA
Messenger application from a directory containing the JXTA JARs using this
code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter11.JxtaMessenger

To see the JXTA Messenger in action, you will probably want to start a second
instance of JxtaMessenger from a different directory using different TCP and
HTTP ports.This will enable you to experiment with the application on
your own machine.

After the peer group has been created and started by JxtaMessenger, the
BuddyList application prompts you to enter an email address and display a name
to use when sending presence information to other peers.This information
will also be used when requesting or approving a chat session.After you have
entered this information, the main user interface should appear as shown in
Figure 11.1.

Figure 11.1 The main JXTA Messenger user interface.

By default, your presence status will be set to Online.You can change your
presence status from the My Status menu item under the Actions menu, as
shown in Figure 11.2.

14_2344 Ch 11 5/14/02 11:48 AM Page 442

443The JXTA Messenger Application

Figure 11.2 Setting your presence status.

When you set your status, a Presence Advertisement is published both locally
and remotely using the peer group’s Presence service.

To monitor other users’ presence status, you need to add the user to your
list of buddies using the Add Buddy menu item under the Actions menu.You
will be prompted for an email address that the BuddyList application can use to
search for a Presence Advertisement using the Presence service.The buddy will
be added to the list, but the buddy’s status will remain as Offline until
BuddyList’s presenceUpdated method is called by the PresenceService instance to
notify BuddyList that a Presence Advertisement has been found for the buddy.

When presence information is received, the BuddyList instance updates both
the user interface and its internal set of buddies.The Peer ID associated with
the buddy is also stored to allow the user to send chat requests to the buddy
without using propagation.

To chat with a buddy, click a buddy in the list and select the Chat with
Buddy menu item under the Actions menu.The BuddyList class uses the Chat
service to send an Initiate Chat Request Message to the remote user.When
the BuddyList class receives a request to initiate a chat session, it checks
whether the requesting buddy is in the user’s list of buddies. If it is, the
BuddyList class creates a pipe using the BidirectionalPipeService and sends an
Initiate Chat Response Message. Otherwise, the BuddyList class ignores the
request.This means that only users who are in each other’s buddy list can chat.

14_2344 Ch 11 5/14/02 11:48 AM Page 443

444 Chapter 11 A Complete Sample Application

When the BuddyList receives notification that the request to chat has
been approved, it attempts to connect to the remote peer using the Pipe
Advertisement contained in the response. If this connection is successful,
the BuddyList spawns a ChatDialog to manage the chat session, as shown in
Figure 11.3.

Figure 11.3 The ChatDialog user interface.

ChatDialog uses the OutputPipe bound by the BidirectionalPipeService to send
messages entered by the user. Messages received on the InputPipe bound by the
BidirectionalPipeService are added to the text area showing the conversation
history.When the user closes the dialog box, the pipes are closed and no fur-
ther communication is possible without requesting a chat session using the
same procedure as before.

Summary
Although the chat application developed in this chapter might not be as fully
featured as MSN Messenger or ICQ, it still demonstrates how the JXTA pro-
tocols covered in this book can be used to create a complete P2P solution:

n The Peer Discovery Protocol—The Presence service implementation
uses the Discovery service to search for Presence Advertisements con-
taining presence information for a user.The Discovery service is also
used by the Presence service implementation to discover presence
information for a user.

14_2344 Ch 11 5/14/02 11:48 AM Page 444

445Summary

n The Resolver Protocol—The Chat service implementation uses the
Resolver service to handle sending and receiving messages used to
request and approve a request to establish a chat session.

n The Rendezvous Protocol—Although it is not used directly, the
Rendezvous service provides the Discovery service with the capability to
publish Presence Advertisements to many peers.

n The Pipe Binding Protocol—The Pipe Binding Protocol is used by
the BidirectionPipeService’s use of the Pipe service to establish a two-way
communication channel to a remote peer for conducting the chat
session.

n The Endpoint Routing Protocol—Underneath all the protocols, the
Endpoint Routing Protocol provides the mechanism required to route
messages to destination peers.

The only protocol not used by this application is the Peer Information
Protocol, which, given its current state, is forgivable.The sample application
also re-enforces the demonstration of peer groups, modules, and services given
in Chapter 10.

So where do you go from here? The next chapter examines some of the
more ambitious projects currently being built by the JXTA Community.The
next chapter also provides information on how you can get involved with
Project JXTA, contribute to an existing project, or propose a project of
your own.

14_2344 Ch 11 5/14/02 11:48 AM Page 445

14_2344 Ch 11 5/14/02 11:48 AM Page 446

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Future of JXTA

12

NOW THAT YOU’VE SEEN JXTA, you’re probably wondering what your next
step should be. Maybe you want to help Project JXTA refine the current Java
reference implementation, or work on a reference implementation in your
preferred development language.You might have a new project that you want
to tackle with this new tool, or you might just want to see what other people
are working on.This chapter provides information on where JXTA is heading
and how you can participate.

Future Directions for Project JXTA
At several points in this book, you might have gotten the impression that
JXTA is not currently a “complete” product. In truth, it might never be
complete. Like many open-source projects, JXTA is constantly evolving as
open-source developers augment the existing reference implementation and
specification to address new problems in peer-to-peer computing.

Besides working on the Java reference implementation, developers within
the JXTA Community are developing new services and applications built on
top of the JXTA platform.The future success of JXTA depends on the
capability of these applications and services to demonstrate the benefits and

15_2344 ch 12 5/14/02 11:50 AM Page 447

448 Chapter 12 The Future of JXTA

viability of JXTA technology. In addition to working on applications of the
JXTA technology, other developers are creating new reference implementa-
tions or the core JXTA platform in languages other than Java.These new
reference implementations will enable developers in a variety of languages to
recognize the benefits of JXTA in their preferred development language.

The following sections outline some of the most prominent services, appli-
cations, and new reference implementations being developed by the JXTA
Community.This is by no means a comprehensive list, and it does not include
applications that are being developed outside the JXTA Community hosted by
Project JXTA. For the latest, look at the list of projects hosted by Project
JXTA at www.jxta.org/servlets/DomainProjects.

Services
Services supply the building blocks that applications can use to provide real
functionality to an end user. Services can be independent or can augment
other services to provide new functionality. Some services might provide
mechanisms of their own that replace the core services provided in the refer-
ence implementation, such as the Discovery service.

Nearly two dozen services projects currently are listed in the Services cate-
gory of projects hosted by the Project JXTA site.These projects are in many
different stages of development. Some projects are just beginning to do their
initial design work, while others are working on coding implementations.This
section outlines three of the most developed services within the JXTA
Community. More information on services being developed by the JXTA
Community is available from the Project JXTA Services web site,
services.jxta.org.

JXTA Search

The JXTA Search project began at Infrasearch, a company that was later
acquired by Sun Microsystems and folded into Project JXTA. Infrasearch’s
proof-of-concept technology used the Gnutella protocol to allow search
clients to query information providers, such as web sites, to gain access to
information not available via traditional search engines.

The JXTA Search project is building on that initial technology using JXTA
to enable information consumers to search for information locked away in the
“deep web.”As outlined in Chapter 1,“Introduction,” current search engines
are limited to indexing static information provided on the web, resulting in

15_2344 ch 12 5/14/02 11:50 AM Page 448

449Future Directions for Project JXTA

irrelevant or outdated responses. In addition, traditional search-engine
technology does not capture or index information that is stored within
corporate databases.As a result, search-engine query results are neither as
comprehensive or as real-time as possible.

JXTA Search solves the problem by allowing information providers to inte-
grate their corporate information stores with a distributed network of peers.
The JXTA Search project defines a set of protocols built on top of JXTA that
allows a client to query an information provider and obtain results from the
information provider’s store of information.The advantage of this approach is
that the results of queries are more up-to-date and comprehensive than those
obtained using search engines.

Note
JXTA Search doesn’t necessarily replace current search-engine technology. Current search-engine
technology is fairly well suited to the problem of indexing static pages. JXTA Search simply aug-
ments traditional search engines to provide access to information not captured by the indexing
crawlers employed by search engines.

More information on the JXTA Search project can be found at the project’s
web site, search.jxta.org.

Content Management System (CMS)

The Content Management System (CMS) is designed to allow peers to share
content with and retrieve shared content from other peers.The CMS service
provides a foundation that other file- or document-sharing applications can
use to handle the details of publishing and retrieving content from a set of
distributed peers.

The CMS defines a Content Advertisement, which provides metadata
describing a particular piece of content.The Content Advertisement itself
includes an MD5 hash generated from the content data that uniquely identi-
fies the content.This MD5 hash can be used by the peer to retrieve content
from any peer hosting the content, without relying on parameters that could
change, such as filename.

In addition to the advertisement definition, the CMS specifies a protocol
for searching for and retrieving content.This protocol augments the basic
JXTA pipe functionality to allow a peer to download content from a peer and
ensure that the content is retrieved in a reliable fashion. Content shared by a
peer is managed by the CMS in a persistent store containing the shared
content and the content advertisements.

15_2344 ch 12 5/14/02 11:50 AM Page 449

450 Chapter 12 The Future of JXTA

In the future, the CMS project hopes to augment the current search func-
tionality to incorporate the JXTA Search service. More information on the
project’s progress can be found at the project’s web site, cms.jxta.org.

JXTA-Remote Method Invocation (RMI)

The Remote Method Invocation API provided by the Java 2 Standard Edition
allows a program to invoke methods on Java objects hosted on another JVM
or even on a remote machine. By default, RMI uses TCP/IP as a network
transport to invoke methods on remote objects and transports serialized object
instances.

The JXTA-RMI service enables a Java developer to use JXTA pipes instead
of TCP/IP as a transport mechanism.The advantage of this approach is that it
allows existing RMI-based applications to build on JXTA without requiring
major changes to the existing application.This implementation still provides
only a point-to-point solution, despite JXTA’s capability to handle many-
to-many communication.

More information on RMI is available from Sun at
java.sun.com/products/jdk/rmi/index.html, and current project information
and source code for JXTA-RMI is available from the project’s web site,
jxta-rmi.jxta.org.

Applications
Applications build on existing JXTA services to provide an end user with
some useful way of interacting with the JXTA P2P network. Usually the
application incorporates some form of user interface, enables users to interact
with JXTA services, and controls their behavior.

Currently more than a dozen application projects are listed in the
Applications category of projects hosted by the Project JXTA site. One appli-
cation being developed, the JXTA Shell, formed the basis of the examples in
the first half of the book.This section outlines two of the most developed
applications within the JXTA Community. More information on applications
being developed by the JXTA Community is available from the Project JXTA
Applications web site, apps.jxta.org.

myJXTA

Besides the JXTA Shell, myJXTA, shown in Figure 12.1, is probably one of
the most fully featured JXTA applications. Originally called InstantP2P,
myJXTA was one of the first applications developed to demonstrate the capa-
bilities of the JXTA platform.This application is currently designed to run
only on desktop computers, but it should eventually be capable of running on
devices supporting the PersonalJava or J2ME platforms.

15_2344 ch 12 5/14/02 11:50 AM Page 450

451Future Directions for Project JXTA

Figure 12.1 The myJXTA user interface.

The myJXTA application enables a user to participate in a group chat room,
engage in one-to-one chat, share files, and create, join, and leave peer groups.
The file-sharing functionality of myJXTA is built on top of the Content
Management Service discussed in the previous section.

Because the myJXTA application is fairly stable, future plans include only
fixing known bugs.The myJXTA source code is a good place to start when
changes are made to the JXTA reference API because an updated version of
the application is usually released at roughly the same time as a new stable
release of the Java reference implementation. More information on the project
and its source code can be found at the project’s web site, instantp2p.jxta.org.

Gnougat

Gnougat, shown in Figure 12.2, is a file-sharing application similar to
Gnutella, with the notable exception that the responsibilities of file sharing
can be distributed across all peers in the network.

In traditional file-sharing applications, peers have no way to determine
whether two search results point to the same content. Searches are performed
based on the name of a shared file or metadata embedded in the file.
Unfortunately, there is no guarantee that two files with matching metadata are
identical. Gnougat attempts to solve this problem by focusing on content
instead of metadata information.

15_2344 ch 12 5/14/02 11:50 AM Page 451

452 Chapter 12 The Future of JXTA

In the Gnougat system, a file containing specific content is downloaded
using a hash of the content itself.This allows the client peer to find peers
hosting the same content and optimize the download of the file. In addition,
the system allows client peers to split the download into multiple chunks, each
of which can be downloaded in parallel from a different peer.

Figure 12.2 The Gnougat user interface.

The Gnougat application still uses metadata to search for shared files. Content
is discovered initially using metadata, such as filename; then a hash descriptor
for a particular piece of content is retrieved from the network.This hash
descriptor is used by the client peer to perform the download by discovering
peers hosting the exact same content.

A preliminary implementation of Gnougat has been made available by the
developers.The installer, along with a discussion paper on the technology
behind Gnougat, is available from the project’s web site, gnougat.jxta.org.

Core Reference Implementations
A variety of non-Java reference implementations currently are in progress
within the JXTA Community. Projects currently have been established for the
C, Objective C, Perl, and Ruby languages.

15_2344 ch 12 5/14/02 11:50 AM Page 452

453Participating in Project JXTA

Other implementation projects are focusing on producing JXTA implemen-
tations for small or constrained devices:

n The JXME project is producing a version of the JXTA platform suitable
for handheld devices capable of running the Java 2 Micro Edition
platform.

n The PocketPC project is also porting the JXTA reference implementa-
tion to C++ specifically for the PocketPC and CE platforms.

n The TINI project is working on a version of JXTA for the TINI
platform, an embedded Java runtime designed to run on top of the
DS80C390 microprocessor from Dallas Semiconductor.

At this point, most of these projects are in the very early stages of design
and implementation.The Java reference implementation remains the most
complete implementation of the JXTA specification at this time.

Participating in Project JXTA
The future of JXTA depends on developers contributing their skills to Project
JXTA.As previously mentioned, JXTA is currently a work-in-progress, one
that requires people to help with all aspects of the development.Whether
you’re interested in starting a new JXTA project or helping out with existing
projects, Project JXTA will benefit from your involvement.

To start getting involved with Project JXTA, you should first do the
following:

1. Register. If you are interested in contributing to an existing project or
starting a project of your own, you should first become a member of the
JXTA Community. Registration is free and can be done from the Project
JXTA registration page at www.jxta.org/servlets/Join. Registering enables
you to join projects as a contributor and propose projects of your own.

2. Submit a contributor agreement. To contribute code to Project
JXTA, you must submit a contributor agreement.The agreement is avail-
able for download from www.jxta.org/jxta_contrib_agreement.PDF.This
agreement ensures that the code you contribute is legally yours to
contribute and is being contributed in accordance with the license
employed by Project JXTA.

3. Join the mailing lists. The JXTA mailing lists are used to propose new
projects, analyze problems to be tackled by peer-to-peer, and announce
changes in the reference implementation.You should join at least the
discuss@jxta.org mailing list to keep abreast of the latest JXTA
developments.

15_2344 ch 12 5/14/02 11:50 AM Page 453

454 Chapter 12 The Future of JXTA

The JXTA Mailing Lists
Project JXTA maintains a number of mailing lists to allow people to discuss
aspects of JXTA and peer-to-peer technology.The four main mailing lists
hosted by Project JXTA are listed here:

n announce@jxta.org—A list used to announce major releases to members of
the general public who are interested in JXTA.This list is not meant to
host discussions.

n dev@jxta.org—A list for developers working with JXTA to discuss techni-
cal issues related to JXTA. Currently, most of the discussion on this list
focuses on the Java reference implementation of JXTA.

n discuss@jxta.org—A more general discussion list devoted to JXTA and
the problems that need to be addressed by peer-to-peer systems.This list
is also used to propose new projects to the JXTA Community and seek
approval from the community.

n user@jxta.org—A list for new JXTA developers who are just starting to
familiarize themselves with the reference implementation. Common
themes include questions on using the JXTA Shell, using myJXTA, and
performing basic operations with the reference implementation APIs.

Instructions for subscribing and unsubscribing from the mailing lists,
as well as searchable archives of the lists, are available from
www.jxta.org/project/www/maillist.html.As with any mailing list, you should
monitor the mailing list for a short time before posting new messages, to
ensure that you are posting content that is appropriate for the mailing list.

In addition to these four lists, each project hosted by Project JXTA hosts its
own mailing lists. By default, each project hosts a cvs mailing list that
announces when changes are committed to the project’s source control and
an issues mailing list that announces messages from the project’s bug-tracking
system.Although projects are free to create other discussion mailing lists,
Project JXTA encourages projects to use the main dev and discuss mailing lists
unless the project generates an unusual amount of mail.This ensures that the
JXTA Community is apprised of developments in all projects currently under
development.

15_2344 ch 12 5/14/02 11:50 AM Page 454

455Participating in Project JXTA

Proposing a New JXTA Community Project
All this talk about the advantages of JXTA might have you thinking of devel-
oping a killer peer-to-peer application of your own. But before you run out
and start development, consider proposing the project to the JXTA
Community for any of the following reasons:

n To obtain constructive criticism—A lot of smart people are involved
in the JXTA Community, and chances are good that some of them have
considered the problem that your application or service will attempt to
solve. Proposing the project to the community will allow discussion of
the potential roadblocks that you will encounter and generate valuable
feedback.

n To eliminate duplication—There’s no point in starting a whole new
project if there’s currently a similar effort under way within the JXTA
Community. Proposing the project to the community ensures that your
application or service isn’t a duplication or variation of an existing pro-
ject. If there’s a matching project in existence, you benefit by being able
to join a team that has already done some of the work.

n To form a team—You don’t want to do all this work yourself, do you?
Proposing the project to the community gives you a chance to gather
interested developers to help you implement your application.

n To take advantage of tool hosting—If your project is approved, you
will be able to manage the project using the tools provided by jxta.org.
These tools include hosted source control, bug tracking, and project
mailing lists.These tools not only relieve you of the burden of hosting
these tools yourself, but they also allow others to easily access and con-
tribute to your project.

To propose a new project to the JXTA Community, you should first register
with Project JXTA, submit a contributor’s agreement, and subscribe to the
discuss@jxta.org mailing list.After you have done this, send a message to the
discuss@jxta.org mailing list with the project’s proposal.The project proposal
should contain the following:

n A descriptive subject line that includes the text “Proposed Project:” and
the name of the proposed project.

n A complete description of the project and the particular problem that
the project will attempt to solve.

n A description of the project category.The categories correspond to those
on the projects page:Apps, Core, Demos, Other, or Services.

15_2344 ch 12 5/14/02 11:50 AM Page 455

456 Chapter 12 The Future of JXTA

You must ensure that your project will conform to the terms of the license
employed by Project JXTA. License information is available from
www.jxta.org/license.html.

After you have posted a proposal message to the mailing list, you should
begin receiving feedback indicating whether the JXTA Community thinks
that your project would be worth undertaking.While this discussion is occur-
ring, you should also register with Project JXTA, create the project’s home
page, and formally propose the project to the jxta.org Community Manager
using the form at www.jxta.org/servlets/ProjectAddStep1. If your proposal is
complete and the discussion on the mailing list indicates that there is reason to
pursue the proposed project, the Community Manager should approve your
project after a few days.

Working with the Java Reference
Implementation Source Code
The Java reference implementation is the most active project currently
under way in the JXTA Community, and many other projects build on its
capabilities. Because most of the Java-based projects have a common build
system, this section shows you how to obtain the latest version of the
reference implementation and build it.

Obtaining Java Reference Implementation Source Code
As previously mentioned, Project JXTA provides hosted projects with
a source-control system to use to manage the project’s source code.The
source-control system used by Project JXTA is the Concurrent Versions
System (CVS), which allows multiple developers to work on the same
code simultaneously and merge their work.

To access the CVS source repository, you’ll need to install a CVS client. For
the demonstration, I’ll be using WinCVS, a Windows-based CVS client avail-
able from www.wincvs.com that provides a simple user interface. Non-Windows
and command-line CVS clients are available from
www.cvshome.org/downloads.html. Manuals and information on CVS are also
available from www.cvshome.org.

To obtain the Java reference implementation, follow these steps:

1. Start WinCVS.

2. Select the Checkout Module item under the Create menu.The
Checkout Settings dialog box displays (see Figure 12.3).

15_2344 ch 12 5/14/02 11:50 AM Page 456

457Working with the Java Reference Implementation Source Code

Figure 12.3 The Checkout Settings dialog box.

3. Enter platform in the Checkout Settings dialog box.This is the CVS
module name of the Java reference implementation in the source code
repository.

4. Select the local folder where the retrieved source code will be placed.

5. Go to the General tab.

6. Enter :pserver:guest@cvs.jxta.org:/cvs into the text field for the
CVSROOT.This specifies the user to use to retrieve the source code.
For this example, just use the guest user.

7. Ensure that Authentication is set to Password File on the CVS Server.

8. Click OK.

The CVS client should now contact the server, retrieve the source code for
the Java reference implementation, and place it in the specified local directory.
When the CVS client has completed the download from source control, you
can build the downloaded source code.

Building the Java Reference Implementation Source Code
The Java reference implementation, as well as many of the Java-based JXTA
Community projects, use the Ant build tool created by the Apache Jakarta pro-
ject (jakarta.apache.org).To build the reference implementation, you first
should download and install the latest version of the Ant build tool from the
Ant home page at jakarta.apache.org/ant/index.html.

15_2344 ch 12 5/14/02 11:50 AM Page 457

458 Chapter 12 The Future of JXTA

Ant provides a build tool similar to make, but it is based on Java and is there-
fore cross-platform.To use Ant, you need only to install Ant and add the path
to Ant’s bin to your system path. On some systems, you might also need to set
a JAVA_HOME variable to point to the location of the JDK.
To build the reference implementation, follow these steps:

1. Open a command prompt.

2. Change to the directory containing the reference implementation code
that you retrieved from source control.

3. Change to the binding\java subdirectory.

4. Set the JAVA_HOME variable. On Windows, this is achieved by typing SET
JAVA_HOME= followed by the fully qualified path to your JDK (for
example, C:\jdk1.3.1_01\).

5. Include the Ant bin directory in your system path. On Windows, this is
achieved by typing SET PATH=%PATH%; followed by the fully quali-
fied path to the Ant bin directory.

6. Build the source code by typing ant.

The Ant build tool will use the build.xml file to compile all the Java reference
implementation source code and create the jxta.jar file.The compiled classes
will be placed in the classes subdirectory, and jxta.jar will be placed in the
lib subdirectory.

Summary
In this chapter, you learned about a few of the services, applications, and
implementations of the JXTA technology, and you learned how to get
involved with Project JXTA to help shape the future of the technology.The
rest, to paraphrase my university professors,“is left as an exercise for the
reader.”

This book has been about teaching people how to use JXTA so that they
can go out and define the direction of peer-to-peer technology. I hope that
this book has helped give you the tools that you need to go out and produce
your own solutions. If you think that something should be included or
expanded in future versions of the book (assuming that there is a second
edition), feel free to drop me an email via my web site, www.brendonwilson.com.

15_2344 ch 12 5/14/02 11:50 AM Page 458

Appendixes

IV

A Glossary

B Online Resources

16_2344 Part IV 5/14/02 11:52 AM Page 459

16_2344 Part IV 5/14/02 11:52 AM Page 460

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Glossary

advertisement A description of a
resource made available on a P2P
network.Types of resources
described by advertisements include
peers, peer groups, pipes, endpoints,
content, and services. In JXTA,
advertisements are represented using
XML documents.
content A generic term used to
describe any type of text or binary
data that can be stored and retrieved
at a later time.
CVS Concurrent Versions System,
an open-source version-control sys-
tem that allows multiple developers
to work on source files simultane-
ously. CVS tracks changes made to
source code files and allows develop-
ers to merge changes back into a
version-control system, to provide an

accurate, trackable, and reproducible
record of a source file at any point
in its development history.
endpoint An abstraction of a
peer’s underlying native network
interfaces.The term is also used to
describe the source peer sending a
message or the destination peer
receiving a message through the
P2P network.
HTML Hypertext Markup
Language, a set of text tags that are
used to mark up plain text to pro-
vide formatting for a web browser.
The HTML standard is currently
migrating toward an XML-compati-
ble schema.
HTTP Hypertext Transfer
Protocol, a protocol used to transfer
HTML and web content. HTTP is a

17_2344 AppA 5/14/02 11:53 AM Page 461

462 HTTP

stateless protocol, which means that
each request is completely indepen-
dent of the requests that preceded it.
IETF Internet Engineering Task
Force, a standards body responsible
for defining standard protocols for
the Internet. Standards are developed
by the IETF with the participation
of the Internet community, and they
are documented in Requests for
Comments (RFCs).
IM Instant messaging, a form of
electronic communication that
allows two or more parties to
exchange text messages instantly.
Examples of instant-messaging appli-
cations include ICQ, MSN
Messenger,AOL Instant Messenger,
and Yahoo! Messenger.
IP Internet Protocol, a protocol
used to send data from a source
computer to a destination computer.
IP is a low-level protocol that is
responsible for sending packets of
data across a network, possibly using
a variety of routes to a destination.
Packets sent across the network are
treated independently, defining IP as
a connectionless protocol. Both the
source and the destination for the
packet are uniquely described in the
packet’s headers by an IP address.
Unlike TCP, IP is not a reliable pro-
tocol and does not guarantee packet
delivery.
JAR Java Archive, a compressed
binary archive format used to dis-
tribute compiled Java class files and
resource files for an application.

Jini A network technology from
Sun that allows devices to sponta-
neously join networks and make
their services available to other
devices.Although there are some
superficial similarities between Jini
and JXTA, Jini is heavily dependent
on the Java language; JXTA is
designed to enable a developer to
create a JXTA-compatible applica-
tion independent of a particular
operating system or programming
language.
JRE Java Runtime Environment,
an environment used to run Java
applications.The JRE consists of
both a Java Virtual Machine and the
standard Java runtime libraries.
JVM Java Virtual Machine, a simu-
lated computer environment used to
run Java applications. Java is different
from traditional computer languages
in that source code is compiled into
byte code rather than machine code
for a particular processor.A JVM
provides a mechanism for translating
Java byte code into native machine
code at execution time, allowing
code to run on any platform that
has a JVM implementation.
LAN Local area network, a data-
communications network connect-
ing a set of computers in a limited
local geographic area.
MD5 Message Digest 5, a hashing
algorithm developed by Dr. Ronald
Rivest of RSA Security. Hashing
algorithms are mathematical one-
way functions that convert a stream

17_2344 AppA 5/15/02 11:28 AM Page 462

463peer

of bytes into a unique set of bytes,
called a message digest.An important
property of a good hashing algo-
rithm is it makes it extremely diffi-
cult to construct two streams of
bytes that result in the same message
digest. Message digests are a fixed
length, which makes them suitable
for uniquely identifying a set of
bytes or providing an integrity
checksum.
metadata Data that describes
other data. In XML, the tags used to
mark up data provide metadata that
describes the type of data contained
by the tag. Metadata provides a
higher level representation of infor-
mation and provides context for the
data it describes or contains.
MIME Multipurpose Internet
Mail Extensions, a mechanism to
allow the exchange of non-ASCII
data via Internet mail. MIME
defines not only a format for mes-
sage data, but also MIME types that
identify the type of data contained
in a MIME message. MIME types
are now used by a variety of applica-
tions besides email, including HTTP,
to allow applications to identify and
handle different types of data.
MP3 MPEG-1 Audio Layer 3, an
audio compression format defined
by the Motion Picture Experts
Group.
NAT Network Address
Translation, a translation scheme
used to protect private internal net-
works from unauthorized incoming

connections. NAT, usually imple-
mented by a private network’s
router, translates a private internal IP
address to an external public IP
address and stores the mapping in
the router’s translation table.
Incoming connections undergo an
inverse mapping procedure; if no
mapping exists, the connection is
blocked from entering the internal
network.
P2P Peer-to-peer, a networking
paradigm that enables intermittently
connected devices, usually separated
from the public network by a fire-
wall, to offer resources to and con-
sume resources from other devices
on the network using a common set
of communication protocols.
packet A unit of data used in net-
work communications.Typically, a
message being sent from one com-
puter to another using IP is divided
into a set of packets that are sent
across the network in an indepen-
dent manner to a destination where
the message is reassembled.
PDA Personal digital assistant, a
handheld computing device that
provides some combination of per-
sonal information management and
communication/networking func-
tionality. Examples of popular PDAs
include the Palm Pilot, Handspring
Visor, Samsung Yopy, and Compaq
iPaq.
peer An entity on the P2P net-
work used to provide access to the
resources of the node and consume

17_2344 AppA 5/14/02 11:53 AM Page 463

464 peer

resources from other entities on the
network.
peer group Peers on a P2P net-
work that join together to serve a
common purpose. Peer groups allow
peers to segment the network space
by application, security, and moni-
toring requirements.
pipe A virtual communications
channel that connects a source end-
point to one or more destination
endpoints to permit message
exchange.
rendezvous peer A peer that
provides simple peers with a way of
discovering other peers and adver-
tisements on the P2P network.A
rendezvous peer also provides simple
peers with the capability to propa-
gate messages within a group, across
boundaries between public and pri-
vate networks. Some rendezvous
peers also cache advertisements to
reduce network traffic and improve
efficiency.
router peer A peer providing
routing services to enable peers
inside private internal networks
behind firewall and NAT equipment
to participate in a P2P network.
service A mechanism for providing
access to a resource over a network
to other peers on a P2P network.
SGML Standard Generalized
Markup Language, a method of
defining a document language that
can be used to mark up documents
with metadata using a set of
tags. HTML is an SGML-based

document language that defines a set
of tags used to mark up documents
for presenting within a web browser.
simple peer The simplest type of
peer on a P2P network.A simple
peer provides resource to and con-
sumes resources from other peers on
the network.A simple peer is not
responsible for forwarding messages
on behalf of other peers or provid-
ing third-party information to the
network.
SMTP Simple Mail Transport
Protocol, a protocol used for
exchanging email between servers.
TCP Transport Control Protocol,
a protocol that defines rules to guar-
antee that the packets that form a
message arrive at the destination in a
timely fashion and are reassembled
correctly.TCP is used in conjunc-
tion with IP, which provides the
function of communicating packets
across the network from a source to
a destination, in a form called
TCP/IP.
TTL Time To Live, a property
used to limit the propagation of
messages between rendezvous peers.
The TTL property of a message
defines the maximum number of
times that a message should be prop-
agated to other peers.When a ren-
dezvous peer receives a message, it
decrements the message’s TTL value.
If the result is 0, the message is not
propagated to other peers; otherwise,
the message is propagated using the
new TTL value.

17_2344 AppA 5/15/02 11:28 AM Page 464

465XML

UDP User Datagram Packet, a
protocol that defines port numbers
used to distinguish communication
layered on top of IP and checksums
to verify data integrity. UDP is used
in conjunction with IP, which pro-
vides the actual function of commu-
nicating packets across the network
from a source to a destination. Like
IP, UDP is an unreliable protocol
that does not guarantee delivery.
UTF-8 Unicode Transformation
Format, an encoding scheme used to
represent Unicode strings that is
specifically optimized for represent-
ing ASCII characters.
WSDL Web Services Description
Language, an XML-based language
used to define the services offered
by a server and how to engage those
services.
XML eXtensible Markup
Language, a language used to define
a set of tags that can be used to
structure textual data.Tags defined
by an XML Document Type
Definition are used to mark up data,
thereby providing additional infor-
mation, or metadata, about the data.
XML is a simple text-based lan-
guage that can be easily transformed
into other formats using eXtensible
Stylesheet Language Transform
(XSLT).

17_2344 AppA 5/14/02 11:53 AM Page 465

17_2344 AppA 5/14/02 11:53 AM Page 466

Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Online Resources

B

NO BOOK CAN HOPE TO COVER every aspect of P2P, either now or in the
future. However, a number of online resources can help any budding P2P
developer become a guru in his own right.This section lists some of the
most relevant online resources devoted to the P2P movement.

P2P Companies and Organizations
These companies, organizations, and applications are at the bleeding edge of
the P2P revolution; in some cases, they have helped it achieve the foothold
that it has in the world of modern computing.

Napster
www.napster.com

The bad boy of the P2P networking world, Napster is credited with starting
the P2P revolution with its hybrid P2P MP3 file-sharing software. Napster
uses a hybrid P2P network consisting of a centralized server that handles
indexing of a user’s song files and allowing peers to locate song files to
download. Individual peers handle the file-transfer process independent

18_2344 AppB 5/14/02 11:56 AM Page 467

468 Appendix B Online Resources

of the centralized server. Unfortunately, the centralized portion of Napster’s
service ultimately made it vulnerable to legal attacks by the recording industry.
Napster’s copyright infringement–enabling software got it into hot water with
the Recording Industry Association of America. However, it struggled on and
is now set to relaunch with a new subscription service to provide access to
licensed music using the same distribution technology.

Gnutella
www.gnutelliums.com

Napster’s successor, Gnutella, adopted a pure P2P file-sharing model, allowing
it to avoid the legal difficulties encountered by Napster.With no central server
providing services, the Gnutella software provided no target for the recording
industry to attack. Unlike Napster, Gnutella allows sharing of any type of file,
not just MP3s.Although there is no longer a Gnutella program, dozens of
clones have picked up where the original Gnutella application finished,
improving the capabilities and performance of the file-sharing technology.

MojoNation
www.mojonation.net

One of the many niche content-distribution technologies built on P2P,
MojoNation attempts to address the problems of P2P using an artificial
currency, called Mojo. Users of the system earn Mojo by providing content,
and they spend Mojo to gain access to content.This currency helps enforce
resource sharing by participants in the P2P network and prevents the network
from suffering the Tragedy of the Commons described in Chapter 1,
“Introduction.” MojoNation also breaks files into fragments, scattering them
across the network via multiple download sites in parallel, to enable faster
downloads from peers using dial-up.

Freenet
freenet.sourceforge.net

Another of the niche content-distribution P2P networks, Freenet provides
anonymous and decentralized content distribution. Freenet uses strong cryp-
tography to protect resources distributed across the network, making it almost
impossible for an attacker to destroy information on the network by prevent-
ing peers from determining what information is stored in their local cache.
The Freenet solution also mirrors high-demand content to multiple locations
to provide efficient service and bandwidth usage across the network.

18_2344 AppB 5/14/02 11:56 AM Page 468

469P2P Magazines

Groove Networks
www.groove.net

The brainchild of Ray Ozzie, the creator of Lotus Notes, Groove Networks is
building a platform for providing services in shared spaces that allow users to
form peer groups and interact directly. One of Groove’s unique features is its
capability to handle offline interaction: Changes made to a user’s shared space
are reflected in other members of the peer group. Groove aggregates common
P2P applications to provide a complete solution for business interaction that
includes instant messaging, file sharing, and group activities, such as document
editing or whiteboarding. Currently the Groove client is supported only on
Microsoft Windows platforms.

Jabber
www.jabber.com

Jabber produces an instant-messaging client and server capable of interacting
with all the major IM services, including AOL Instant Messenger, MSN
Messenger,Yahoo! Messenger, and ICQ.The Jabber client uses an XML-based
protocol to interact with major IM services via the Jabber server.The
company is attempting to provide a common platform for instant-messaging
solutions, working closely with the Internet Engineering Task Force’s IM
standardization effort.

IAM Consulting’s JXTA Development Toolkit
www.iamx.com/jxtaDevTools/index.htm

IAM Consulting is a consulting firm providing JXTA and Java expertise that
has been working on a set of tools to simplify JXTA development. Its current
toolkit includes a Peer Group Monitoring tool to allow a developer to view
the activity of a peer group’s Discovery service, as well as a message monitor to
enable a developer to debug pipes. Members of IAM consulting are also
responsible for starting the JXTA Special Interest Group (SIG) in New York.
For more information on the JXTA SIG, see www.jxtasig.org.

P2P Magazines
These online magazines provide access to articles on a variety of P2P-related
topics, including tutorials on developing P2P solutions, discussion of the future
direction of P2P, and information on emerging P2P technologies.

18_2344 AppB 5/14/02 11:56 AM Page 469

470 Appendix B Online Resources

OpenP2P
www.openP2P.com

OpenP2P’s online articles discuss P2P and its implications from a technologi-
cal, legal, and social point of view.With insightful writing, OpenP2P is usually
on top of the latest P2P developments and offers a good starting point for
learning about new P2P technologies.

IBM’s DeveloperWorks, Java Section
www.ibm.com/developerworks/java

The Java section of IBM’s DeveloperWorks site provides developers free access
to a huge library of Java code and Java tutorials, which is an invaluable Java
resource even if you’re not working on P2P software. If you search the site,
you’ll find recent articles on Java and P2P, and Project JXTA.

Peer-To-Peer Central
www.peertopeercentral.com

Peer-To-Peer Central provides free articles on the development of P2P tech-
nology, reviews of new P2P development platforms, and industry perspectives
on the importance of P2P.The site also enables users to purchase analysis
papers and case studies on the P2P industry.

Project JXTA Resources
Project JXTA houses a variety of web sites devoted to specific aspects of the
JXTA Community’s development efforts.All these sites are accessible from the
main Project JXTA web site, www.jxta.org, so only the most relevant sites are
listed in this section.

JXTA Protocol Specifications
spec.jxta.org

The JXTA Protocols Specification project is responsible for maintaining the
JXTA protocol documentation and ensuring that JXTA implementations are
compliant with the specification.This site houses the most up-to-date version
of the JXTA Protocols Specification in DocBook and HTML formats.

18_2344 AppB 5/14/02 11:56 AM Page 470

471Internet Standards and Standards Bodies

Project JXTA Downloads
download.jxta.org

The download site provides access to the latest JXTA binaries, including the
latest stable JAR files for the JXTA Demo applications, daily builds, and a set
of easy installers for the Demo applications.

JXTA Community Projects
www.jxta.org/servlets/DomainProjects

All the JXTA Community projects currently under way are accessible from
this site, including projects creating applications, services, and core layer
technology, as well as tutorials on the JXTA platform.

Internet Standards and Standards Bodies
Many of the technologies used by JXTA or related to JXTA are managed by a
standards body.This section lists the standards and standards bodies most rele-
vant to the JXTA platform.

The World Wide Web Consortium (W3C)
www.w3.org

The World Wide Web Consortium (W3C) is responsible for maintaining many
of the popular standards used by Internet applications, including the XML,
SOAP, HTTP, and HTML standards.

The Peer-to-Peer Working Group
www.p2pwg.com

The P2P Working Group is a consortium of P2P-related companies working
to establish best-known practices for P2P solutions to provide an infrastructure
for P2P computing.Although the web site doesn’t house much content now,
given the impressive list of member companies—including Intel, Groove
Networks, United Devices, and many others—this working group likely will
publish a wide variety of content devoted to P2P in the near future.

The XML 1.0 Standard
www.w3.org/XML/

The XML 1.0 Standard site provides access to the text of the standard itself,
details on the state of various XML working groups, and links to XML-related
technologies currently being developed by the W3C.

18_2344 AppB 5/14/02 11:56 AM Page 471

472 Appendix B Online Resources

The Network News Transport Protocol (NNTP)
www.ietf.org/rfc/rfc0977.txt?number=977

The Internet Engineering Task Force is responsible for maintaining the specifi-
cation of the NNTP, which is the major underlying protocol used by Usenet.
Usenet was used as an example of one of the earliest rudimentary P2P appli-
cations in Chapter 1.

Block Extensible Exchange Protocol (BEEP)
www.ietf.org/rfc/rfc3080.txt

The Block Extensible Exchange Protocol provides a way for peers to simulta-
neously and independently exchange messages, usually formatted as MIME or
text content, using the BEEP-defined framing mechanism.

18_2344 AppB 5/14/02 11:56 AM Page 472

Index

Symbols

| (pipe) operator, combining
commands, 65-66

A

addresses, Endpoint Addresses, 256-258

Advertisement class, 118

advertisements, 83
Advertisement class, 118
cached advertisements

finding, 108-114
flushing, 114-118

defined, 20-21
expiration, 24
finding, 23

direct discovery method, 25
with Discovery Query Message, 84-90
indirect discovery method, 25-28
no discovery method, 23-24

instantiating, 119
Module Class Advertisement, 287-288
Module Implementation Advertisement,

291-293, 299
Module Specification Advertisement,

288-291
Peer Advertisements, 66, 296-298

flushing, 68
Peer Group Advertisements, 298

creating, 70-71
expiration, 308
flushing, 72

Pipe Advertisements, 203
creating, 73, 209-213

Presence Advertisement (sample chat
application), 349-361

publishing, 119-123
remote advertisements, finding, 104-108
Rendezvous Advertisements, publishing,

163-165

Ant build tool, 458

AOL Internet Messenger, 10

Application interface (modules),
293-294

application modules, 286

applications, future of Project JXTA,
450-452

applications layer (JXTA), 43-44

asynchronous pipes, 202

authentication of peer group
members, 307

Authenticator interface, 307

B

BEEP (Block Extensible Exchange
Protocol)

endpoint protocol implementation, 255
web site, 472

bidirectional pipes, 236-249

BidirectionalPipeService class, 236-237

binary message format, 258

binding pipes to endpoints. See Pipe
Binding Protocol (PBP)

Block Extensible Exchange Protocol
(BEEP) web site, 472

booting. See executing

building Java reference implementation
source code, 457-458

built-in commands, JXTA Shell, 61-63

19_2344 index 5/15/02 9:40 AM Page 473

474 cache, flushing

exit, 61
exportfile, 61, 64
get, 61
grep, 61
groups, 61, 69-70
help, 61
history, 61
importfile, 61, 64
instjar, 61
join, 62, 71
leave, 62, 72
man, 61-62
mkadv, 62, 70
mkmsg, 62
mkpgrp, 62, 70
mkpipe, 62
more, 62
peerconfig, 62
peerinfo, 62
peers, 62, 67-68
put, 62
rdvserver, 62
rdvstatus, 55-56, 62-63
recv, 62
search, 62
send, 62
set, 62
setenv, 62
sftp, 62
share, 62
Shell, 62
Sql, 62
Sqlshell, 62
Talk, 62, 75-76
Uninstjar, 62
Version, 62
wc, 62
who, 62
whoami, 62, 66, 69

communications, 22
advertisement discovery, 23

direct discovery method, 25
indirect discovery method, 25-28
no discovery method, 23-24

NAT/firewall traversal, 32-33
double firewall/NAT traversal, 35-36
single firewall/NAT traversal, 33-35

C

cache, flushing
Peer Advertisements from, 68
Peer Group Advertisements from, 72

Cache Manager, 114

cached advertisements
finding, 108-114
flushing, 114-118

cached peer information, finding,
193-199

cat command, 61, 64-65, 70

centralized database (disadvantage of
search engines), 7

chat application example. See sample
chat application

Chat service (sample chat application),
creating, 374

Initiate Chat Request Message, 374-381
Initiate Chat Response Message,

382-390
interface for, 391-403
sending chat messages, 390-391

chpgrp command, 61, 72

Clary, Mike (Project JXTA), 13

clear command, 61

clearing. See flushing

client/server architecture
as P2P network, 37
versus P2P, 3-5, 7

CMS (Content Management System)
project, 449-450

command-line interface,
JXTA Shell, 61

built-in commands, 61-63
combining commands, 65-66
environment variables, 63-65

commands
cat, 61, 64-65, 70
chpgrp, 61, 72
clear, 61
combining with pipe (|) operator, 65-66
creating new, 76-79
env, 61, 63

19_2344 index 5/15/02 9:40 AM Page 474

475double firewall/NAT traversal

rendezvous and router peer discovery, 28
through firewalls, 29-30
through NAT, 30-32

Concurrent Versions System
(CVS), 456

configuring JXTA Shell, 53-55
troubleshooting configuration, 55-58
without network connection, 58-60

connection leases. See leases

connections (network), configuring
JXTA Shell without, 58-60

Content Management System (CMS)
project, 449-450

contents, entity naming schemes, 22

core layer (JXTA), 42-43

core reference implementations, future
of Project JXTA, 452-453

core services, 20, 93

creating
Chat service (sample chat

application), 374
Initiate Chat Request Message, 374-381
Initiate Chat Response Message,

382-390
interface for, 391-403
sending chat messages, 390-391

input pipes, 213-219
listener interfaces, 317-319
messages, 73-74
Net Peer Group, 299-300
new commands, 76-79
output pipes, 220-227
peer groups, 70-71, 302-303, 305
Pipe Advertisements, 209-213
pipes, 73
Presence service (sample chat

application), 348-349
interface for, 361-374
Presence Advertisement, 349-361

query and response strings (Resolver
handler example), 135-144

sample chat application. See sample
chat application

services, 309
adding to peer groups, 328-344
example service interface creation,

320-321

example service interface implementation,
321-328

example service messages, 309-317
listener interface creation, 317-319
testing new services, 344

World Peer Group, 295-299

current peer group information, 69

CVS (Concurrent Versions
System), 456

D

deleting. See flushing

design specifications for JXTA, 40

destroying peer groups, 308

DeveloperWorks (IBM), 470

direct discovery method, finding
advertisements, 25

directory structure, JXTA Shell
installation, 51-52

discovery. See finding

Discovery Query Message, 84-90

Discovery Response Message, 91-92

Discovery service, 93-94
DiscoveryEvent class, 95-96

example, 96-104
DiscoveryListener interface, 94-95

example, 96-104
DiscoveryService interface, 93-94
finding cached advertisements, 108-114
finding remote advertisements, 104-108
flushing cached advertisements, 114-118
sample chat application, 444

DiscoveryEvent class, 95-96
example, 96-104

DiscoveryListener interface, 94-95
example, 96-104

DiscoveryService interface, 93-94

distributed computing (history of
P2P), 12

Distributed.net project, 12

double firewall/NAT traversal, 35-36

19_2344 index 5/15/02 9:40 AM Page 475

476 downloading Project JXTA files

downloading Project JXTA files, 471

DTDs, 45

dynamic NAT, 30

E

Ellis, Jim (history of Usenet), 9

Endpoint Addresses, 256-258

Endpoint Router Message, 281-283

Endpoint Router Transport Protocol,
283-284

Endpoint Routing Protocol (ERP), 13,
251, 278-279

Endpoint Router Message, 281-283
Route Query Message, 279-280
Route Response Message, 280-281
sample chat application, 445

Endpoint service, 252-255
EndpointFilterListener interface,

276-277
EndpointMessenger interface, 270-276
EndpointServer and

EndpointPropagateClient classes,
268-269

receiving messages, 259-263
sending messages, 263-268

EndpointFilterListener interface,
276-277

EndpointListener interface, 259

EndpointMessenger interface, 270-276

EndpointPropagateClient class, 268-269

endpoints (network transport), 19. See
also Endpoint service

binding pipes to, 201
defined, 202, 251-252
message formatting, 258
protocol implementations, 255-256

EndpointServer class, 268-269

entity naming schemes, 22

env command, 61, 63

environment variables, JXTA Shell,
63-64

importing and exporting, 64-65

ERP. See Endpoint Routing Protocol
(ERP)

example chat application. See sample
chat application

ExampleHandler class, 152-153

executing
JXTA Messenger application (sample

chat application), 442-444
JXTA platform, 294-295
JXTA Shell, 52-53

exit command, 61

expiration
of advertisements, 24
of Peer Group Advertisements, 308

exportfile command, 61, 64

exporting environment variables, 64-65

eXtensible Markup Language (XML),
44-46

F

file sharing (history of P2P), 10-11

filters (messages), 276-277

finding
advertisements, 23

direct discovery method, 25
with Discovery Query Message, 84-90
indirect discovery method, 25-28
no discovery method, 23-24

cached advertisements, 108-114
cached peer information, 193-199
peer groups, 69-70
peer resources. See Peer Discovery

Protocol (PDP)
peers, 67-68
remote advertisements, 104-108
remote peer information, 188-193
rendezvous and router peers, 28
rendezvous peers, 164

troubleshooting JXTA Shell configuration,
56-58

firewalls
and NAT, traversing, 32-36
communications through, 29-30

19_2344 index 5/15/02 9:40 AM Page 476

477JXME project

flushing
cached advertisements, 114-118
Peer Advertisements, 68
Peer Group Advertisements, 72

formatting messages, endpoint
message formatting, 258

Freenet, 11, 468

future of Project JXTA, 447-448
application projects, 450-452
core reference implementation projects,

452-453
services projects, 448-450

G-H

get command, 61

Gnougat application, 451-452

Gnutella, 11, 468
as P2P network, 37

grep command, 61

Groove Networks, 469

groups command, 61, 69-70

handlers. See Resolver handler example

helloworld shell command
(listing 3.16), 77-78

help command, 61

history command, 61

history of P2P
distributed computing, 12
file sharing, 10-11
instant messaging (IM), 9-10
Usenet, 8-9

HTTP, endpoint protocol
implementation, 255

I

IAM Consulting, 469

IBM’s DeveloperWorks, 470

ICQ (instant messaging system), 9

identifiers. See entity naming schemes

IM (instant messaging), history of P2P,
9-10

importfile command, 61, 64

importing environment variables,
64-65

indirect discovery method, finding
advertisements, 25-28

Initiate Chat Request Message (sample
chat application), 374-381

Initiate Chat Response Message
(sample chat application), 382-390

input pipes (network transport),
19, 204

creating, 213-219

installing JXTA Shell, 48-49
directory structure, 51-52
for other Java-supported platforms, 51
preparations for, 48
for Solaris/Linux/UNIX, 50-51
for Windows, 49-50

instant messaging (IM), history of P2P,
9-10

instantiating advertisements, 119

instjar command, 61

Internet search engines, 7-8

invoking. See executing

J

Jabber, 10, 469

Java 2 SDK, web site for, 48

Java reference implementation source
code, 456

building, 457-458
obtaining, 456-457

Java Run-Time Environment (JRE), 48

Java-supported platforms, installing
JXTA Shell for, 51

Jini, 47

join command, 62, 71

joining peer groups, 71-72, 305-307

Joy, Bill (Project JXTA), 13

JRE (Java Run-Time Environment), 48

JXME project, 453

19_2344 index 5/15/02 9:40 AM Page 477

478 JXTA

JXTA
advantages and disadvantages, 46-47
defined, 13
design specifications, 40
future of Project JXTA, 447-448

application projects, 450-452
core reference implementation projects,

452-453
services projects, 448-450

layers, 42
applications layer, 43-44
core layer, 42-43
services layer, 43

participating in Project JXTA, 453
mailing lists, 454
proposing new projects, 455-456

Project JXTA
online resources, 470-471
overview, 12-14
protocols, 13-14

protocol suite, 40-42
versus .NET, 47
versus Jini, 47

JXTA Community projects, 471

JXTA demo installer, downloading, 49

JXTA Development Toolkit, 469

JXTA Messenger application (sample
chat application), 403

executing, 442-444
JxtaMessenger class, 433-441
user interface for, 403-433

JXTA platform
executing, 294-295
starting and stopping for Pipe

service, 208

JXTA Protocols Specification, 40, 470

JXTA Search project, 448-449

JXTA Shell, 48
command-line interface, 61

built-in commands, 61-63
combining commands, 65-66
environment variables, 63-65

configuring, 53-55
without network connection, 58-60

creating
messages, 73-74
peer groups, 70-71
pipes, 73

current peer group information, 69
executing, 52-53
extending functionality of, 76-79
finding

peer groups, 69-70
peers, 67-68

flushing
cached Peer Advertisements, 68
cached Peer Gruop Advertisements, 72

installing, 48-49
directory structure, 51-52
for other Java-supported platforms, 51
for Solaris/Linux/UNIX, 50-51
for Windows, 49-50

joining peer groups, 71-72
leaving peer groups, 72
local peer information, 66-67
preparations for installation, 48
sending and receiving messages, 74-75
starting two instances of, 152
talking to peers, 75-76
troubleshooting configuration, 55-56

finding rendezvous peers, 56-58
username and password as system

properties, 102

JXTA-RMI service, 450

JxtaMessenger class for JXTA
Messenger application (sample chat
application), 433-441

K-L

layers (JXTA), 42
applications layer, 43-44
core layer, 42-43
services layer, 43

Lease Cancel Message, 162, 166-167

Lease Granted Message, 162, 166

Lease Request Message, 162, 165

leases
canceling, 166-167

with Rendezvous service, 171-172
defined, 162

19_2344 index 5/15/02 9:40 AM Page 478

479listings

granting, 166
maintaining, 176
requesting, 165

with Rendezvous service, 171-172

leave command, 62, 72

leaving peer groups, 72, 307

Lime Wire, 12

Linux, installing JXTA Shell for, 50-51

listener interfaces, creating, 317-319

listener objects, DiscoveryListener
interface, 94-95

example, 96-104

listings
adding services to peer group

parameters, 404
changing current peer group, 72
created message example, 74
CreatePeerGroup.java (creating peer

groups), 302-305
creating Discovery Query Messages

(example4_1.java), 87-88
Discovery Query Message XML, 85
Discovery Response Message XML, 91
Endpoint Router Message XML, 282
EndpointMessengerClient.java (sending

messages directly via Endpoint-
Messenger interface), 270-275

EndpointPropagateClient.java (sending
messages via Endpoint service),
264-268

EndpointServer.java (receiving messages
via Endpoint service), 260-263

example output from
ExampleListener, 193

Example Query Message, 134
Example Response Message, 134
ExampleHandler.java, 144-146
ExampleListener.java (implementing

PeerInfoListener interface), 185-187
ExampleListener.java (registering

DiscoveryListener implementations,
96-97

ExampleQueryMsg.java, 135-139
creating services, 309-313

ExampleResponseMsg.java, 139-143
creating services, 313-317

ExampleService.java (creating example
service interface), 320-321

ExampleServiceEvent.java (creating
listener interfaces), 318-319

ExampleServiceImpl.java (implementing
example service interface), 321-328

ExampleServiceListener.java (creating
listener interfaces), 318

ExampleServiceTest.java (adding services
to peer groups), 331-342

expanded XML example, 45
extracting responses from

DiscoveryEvent objects, 96
finding cached advertisements

(example4_4.java), 109-113
finding cached peer information

(example7_2.java), 194-198
finding remote advertisements

(example4_3.java), 104-108
finding remote peer information

(example7_1.java), 188-191
flushing advertisements

(example4_5.java), 114-117
format of traffic element contents (Peer

Info Response Message), 181
GenerateID.java (adding services to peer

groups), 329-330
helloworld shell command, 77-78
imported environment variables, 65
Initiate Chat Reponse Message, 382
Initiate Chat Request Message, 375
JXTA Shell environment variables, 64
leaving peer groups, 72
Module Class Advertisement XML, 287
Module Implementation Advertisement

XML, 291
Module Specification Advertisement

XML, 289
no visible rendezvous peers, 55
obtaining DiscoveryService, 102
obtaining PeerGroup object in Shell

command, 295
output of example4_1 shell

command, 89
output of modified example4_1 shell

command, 90
Peer Advertisement XML, 296
peer group creation methods, 302

19_2344 index 5/15/02 9:40 AM Page 479

480 listings

Peer Group Advertisement XML, 298
Peer Info Query Message, 179
Peer Info Response Message, 180
peers command results, 67
Pipe Advertisement XML, 202
Pipe Binding Answer Message

XML, 206
Pipe Binding Query Message XML, 205
PipeAdvPopulator.java (creating Pipe

Advertisements), 209-212
PipeClient.java (creating output pipes),

220-226
PipeClientServer.java (bidirectional

pipes), 237-247
PipeServer.java (creating input pipes),

213-218
Presence Advertisement XML, 349
PropagatePipeClient.java (propagation

pipes), 229-235
publishing advertisements

(example4_6.java), 121-122
rdvstatus command results, 55
registering handlers with

ResolverService instance
(example5_1.java), 146-151

registering listener objects
(example4_2.java), 97-101

Rendezvous Advertisement XML, 163
RendezVous Propagate Message

XML, 167
RendezVousService message propagation

methods, 169
Resolver Query Message, 128
Resolver Response Message, 130
Route Query Message XML, 279
Route Response Message XML, 280
sample chat application

BuddyList.java, 405-424
ChatDialog.java, 425-432
ChatListener.java, 393
ChatService.java, 391-392
ChatServiceImpl.java, 394-403
InitiateChatRequest.java, 377-381
InitiateChatRequestMessage.java,

375-377
InitiateChatResponse.java, 385-390
InitiateChatResponseMessage.java,

383-385

JxtaMessenger.java, 433-441
PresenceAdv.java, 354-360
PresenceAdvertisement.java, 350-353
PresenceListener.java, 364
PresenceService.java, 362-363
PresenceServiceImpl.java, 364-374

sending responses (example5_2.java),
154-158

simple XML example, 44
updated list of discovered peers, 68
usage information for rdvstatus

command, 63
viewing Pipe Advertisements, 73
viewing received messages, 75
whoami command results, 66

local cache. See cache; cached
advertisements

local peer information, 66-67

loopback paths, 27

loopbacks, avoiding, 167-168

M

Mac platform, downloading Java
environment for, 48

mailing lists, participating in
Project JXTA, 454

man command, 61-62

Membership service, 305-306

MembershipService instance, 306
authentication of peer group

members, 307

message elements, Rendezvous
Protocol (RVP), 162

message formats, Rendezvous Protocol
(RVP), 162

messages (network transport), 19
controlling propagation, 167-168
creating, 73-74
Discovery Query Message, 84-90
Discovery Response Message, 91-92
endpoint message formatting, 258
Endpoint Router Message, 281-283
example service messages (creating

services), 309-317

19_2344 index 5/15/02 9:40 AM Page 480

481no-discovery method, finding advertisements

filtering, 276-277
Initiate Chat Request Message (sample

chat application), 374-381
Initiate Chat Response Message (sample

chat application), 382-390
Peer Info Query Message, 179-180
Peer Info Response Message, 180-183
Pipe Binding Answer Message, 206
Pipe Binding Query Message, 205-206
propagating with Rendezvous service,

169-170
receiving, 74-75

via Endpoint service, 259-263
with Rendezvous service, 170-171

receiving via Pipe service, 208
creating input pipes, 213-219
creating output pipes, 220-227
creating Pipe Advertisements, 209-213
starting and stopping JXTA

platform, 208
reliable delivery of, 228
Resolver Query Message, 128-129

sending, 151-152
Resolver Response Message, 130-131
Route Query Message, 279-280
Route Response Message, 280-281
sending, 75-75. See also Endpoint

Routing Protocol (ERP)
via Endpoint service, 263-268
via EndpointMessenger interface,

270-276
sending via Pipe service, 208

creating input pipes, 213-219
creating output pipes, 220-227
creating Pipe Advertisements, 209-213
starting and stopping JXTA

platform, 208
TTL (Time To Live) attribute, 27

Microsoft .NET versus JXTA, 47

mkadv command, 62, 70

mkmsg command, 62

mkpgrp command, 62, 70

mkpipe command, 62

Module Class Advertisement, 287-288

Module Implementation
Advertisement, 291-293, 299

Module interface (modules), 293-294

Module Specification Advertisement,
288-291

Module Specification ID, 123

modules
application modules, 286
defined, 286-287
Module Class Advertisement, 287-288
Module Implementation Advertisement,

291-293
Module Specification Advertisement,

288-291
Module, Service, and Application

interfaces, 293-294
service modules, 286

MojoNation, 11-12, 468

more command, 62

Morpheus, 11

MSN Messenger, 10

myJXTA application, 450-451

N

naming. See entity naming schemes

Napster, 10, 467
as P2P network, 36-37

NAT (Network Address Translation), 30
and firewalls, traversing, 32-36
communications through, 30-32

Net Peer Group, 93
creating, 299-300

Network Address Translation. See NAT

network connections, configuring
JXTA Shell without, 58-60

network transport, 19-20

NNTP (Network News Transport
Protocol), 9

web site, 472

no discovery method, finding
advertisements, 23-24

19_2344 index 5/15/02 9:40 AM Page 481

482 online resources

O

online resources
companies and organizations, 467-469
magazines, 469-470
Project JXTA resources, 470-471
standards bodies, 471-472

OpenP2P, 470

output pipes (network transport),
19, 204

creating, 220-227

Ozzie, Ray (Groove Networks), 469

P

P2P (peer-to-peer) technology, 3
advertisements, defined, 20-21
client/server architecture as, 37
communications, 22

advertisement discovery, 23-28
NAT/firewall traversal, 32-36
rendezvous and router peer discovery, 28
through firewalls, 29-30
through NAT, 30-32

entity naming schemes, 22
Gnutella as, 37
history of

distributed computing, 12
file sharing, 10-11
instant messaging (IM), 9-10
Usenet, 8-9

Napster as, 36-37
network transport, defined, 19-20
online resources

companies and organizations, 467-469
magazines, 469-470
Project JXTA resources, 470-471
standards bodies, 471-472

peer groups, defined, 18-19
peers

defined, 16
rendezvous peers, 17
router peers, 17-18
simple peers, 17

Project JXTA
overview, 12-14
protocols, 13-14

protocols, defined, 21
questions raised by, 15-16
services, defined, 20
versus client/server architecture, 3-5, 7
versus search engines, 7-8

P2P Working Group, 471

password, as system property, 102

PBP. See Pipe Binding Protocol (PBP)

PDP. See Peer Discovery
Protocol (PDP)

Peer Advertisements, 66, 296-298
flushing, 68

Peer Discovery Protocol (PDP), 13,
83-84

Discovery Query Message, 84-90
Discovery Response Message, 91-92
sample chat application, 444

Peer Endpoint Protocol. See Endpoint
Routing Protocol

Peer Group Advertisements, 298
creating, 70-71
expiration, 308
flushing, 72

peer group services, defined, 20

peer groups, 285
adding new services to, 328-344
adding services to parameters

(listing 11.16), 404
authentication, 307
creating, 70-71, 302-305
current peer group information, 69
defined, 18-19
destroying, 308
entity naming schemes, 22
finding, 69-70
joining, 71-72, 305-307
leaving, 72, 307
Net Peer Group, 93

creating, 299-300
obtaining PeerGroup object, 294-295
PeerGroup interface, 300-301
World Peer Group, creating, 295-299

Peer Info Query Message, 179-180

Peer Info Response Message, 180-183

19_2344 index 5/15/02 9:40 AM Page 482

483pipes (network transport)

Peer Info service, 183-184
finding cached peer information,

193-199
finding remote peer information,

188-193
PeerInfoListener interface, 184-185

implementing, 185-187
registering, 187-188

Peer Information Protocol (PIP), 13,
177-179

Peer Info Query Message, 179-180
Peer Info Response Message, 180-183

Peer Resolver Protocol (PRP), 13,
125-127

Resolver Query Message, 128-129
Resolver Response Message, 130-131

peer services, defined, 20

Peer-To-Peer Central, 470

peer-to-peer technology. See P2P

peerconfig command, 62

PeerGroup interface, 300-301

PeerGroup object, obtaining, 294-295

peerinfo command, 62

PeerInfoListener interface, 184-185
implementing, 185-187
registering, 187-188

peers
advertisements. See advertisements
cached peer information, finding,

193-199
defined, 16
entity naming schemes, 22
finding, 67-68. See also Peer Discovery

Protocol (PDP)
leases

canceling, 166-167
defined, 162
granting, 166
maintaining, 176
requesting, 165

local peer information, 66-67
propagating messages with Rendezvous

service, 169-170
receiving propagated messages with

Rendezvous service, 170-171
remote peers, finding information about,

188-193

rendezvous peers, 17, 162
connecting and disconnecting with

Rendezvous service, 171-172
finding, 28, 164
finding advertisements, 26
finding available, 56-58
troubleshooting JXTA Shell configuration,

55-56
router peers, 17-18

finding, 28
firewall/NAT traversal, 33-36

simple peers, 17
talking to, 75-76

peers command, 62, 67-68

PIP. See Peer Information Protocol

Pipe Advertisements, 203
creating, 73, 209-213

Pipe Binding Answer Message, 206

Pipe Binding Protocol (PBP), 13,
201-205

Pipe Binding Answer Message, 206
Pipe Binding Query Message, 205-206
sample chat application, 445

Pipe Binding Query Message, 205-206

pipe (|) operator, combining
commands, 65-66

Pipe service, 207-208
bidirectional pipes, 236-249
PipeServer and PipeClient classes,

227-228
propagation pipes, 229-235
sample chat application, 445
secure pipes, 228-229
sending and receiving messages, 208

creating input pipes, 213-219
creating output pipes, 220-227
creating Pipe Advertisements, 209-213
starting and stopping JXTA

platform, 208

PipeClient class, 227-228

pipes (network transport), 19, 73.
See also Pipe Binding Protocol (PBP);
Pipe service

asynchronous, 202
bidirectional pipes, 236-249
binding to endpoints, 201

19_2344 index 5/15/02 9:40 AM Page 483

484 pipes (network transport)

creating, 73
messages, 73-74

defined, 201-202
entity naming schemes, 22
input, 204

creating, 213-219
output, 204

creating, 220-227
propagation, 205, 229-235
secure pipes, 228-229
sending and receiving messages, 74-75
unidirectional, 202

PipeServer class, 227-228

PocketPC project, 453

Presence Advertisement (sample chat
application), 349-361

Presence Management Framework web
site, 348

Presence service (sample chat
application), creating, 348-349

interface for, 361-374
Presence Advertisement, 349-361

Project JXTA
future of, 447-448

application projects, 450-452
core reference implementation projects,

452-453
services projects, 448-450

online resources, 470-471
overview, 12-14
participating in, 453

mailing lists, 454
proposing new projects, 455-456

protocols, 13-14

propagation of messages. See also
sending

controlling, 167-168
receiving propagated messages with

Rendezvous service, 170-171
with Rendezvous service, 169-170

propagation pipes, 205, 229-235

proposing new JXTA projects, 455-456

protocol implementations for
endpoints, 255-256

protocols, 40-42
defined, 21
Endpoint Router Transport Protocol,

283-284
Endpoint Routing Protocol (ERP), 251,

278-279
Endpoint Router Message, 281-283
Route Query Message, 279-280
Route Response Message, 280-281
sample chat application, 445

Peer Discovery Protocol (PDP), 83-84
Discovery Query Message, 84-90
Discovery Response Message, 91-92
sample chat application, 444

Peer Information Protocol (PIP),
177-179

Peer Info Query Message, 179-180
Peer Info Response Message, 180-183

Peer Resolver Protocol (PRP), 125-127
Resolver Query Message, 128-129
Resolver Response Message, 130-131

Pipe Binding Protocol (PBP), 201-205
Pipe Binding Answer Message, 206
Pipe Binding Query Message, 205-206
sample chat application, 445

Project JXTA, 13-14
Rendezvous Protocol (RVP), 162-163

Lease Cancel Message, 166-167
Lease Granted Message, 166
Lease Request Message, 165
publishing Rendezvous Advertisements,

163-165
RendezVous Propagate Message,

167-168
sample chat application, 445

Resolver Protocol (sample chat
application), 445

PRP. See Peer Resolver Protocol (PRP)

publishing
advertisements, 119-123
Rendezvous Advertisements, 163-165

put command, 62

19_2344 index 5/15/02 9:40 AM Page 484

485Resolver handler example

Q-R

queries, sending, 151-152

query strings, creating (Resolver
handler example), 135-144

QueryHandler interface, 132-134
Resolver handler example, 144-146

RdvMonitor interface, 174-175

rdvserver command, 62

rdvstatus command, 55-56, 62-63

receiving messages, 74-75
via Endpoint service, 259-263
via Pipe service, 208

creating input pipes, 213-219
creating output pipes, 220-227
creating Pipe Advertisements, 209-213
starting and stopping JXTA

platform, 208

recv command, 62

reference implementation. See Java
reference implementation source code

registering
handlers with ResolverService instance,

146-148, 150-151
PeerInfoListener interface, 187-188

reliable message delivery, 228

remote advertisements, finding,
104-108

Remote Method Invocation (RMI),
JXTA-RMI service, 450

remote peers, finding information
about, 188-193

removing. See flushing

RendAddrCompactor interface, 176

Rendezvous Advertisements,
publishing, 163-165

rendezvous peers, 17, 162
connecting and disconnecting with

Rendezvous service, 171-172
finding, 28, 56-58, 164

advertisements, 26

leases
canceling, 166-167
granting, 166
requesting, 165

troubleshooting JXTA Shell
configuration, 55-56

RendezVous Propagate Message,
167-168

Rendezvous Protocol (RVP), 162-163
Lease Cancel Message, 166-167
Lease Granted Message, 166
Lease Request Message, 165
publishing Rendezvous Advertisements,

163-165
RendezVous Propagate Message,

167-168
sample chat application, 445

Rendezvous service, 161, 168-169
connecting and disconnecting from

rendezvous peers, 171-172
propagating messages, 169-170
RdvMonitor interface, 174-175
receiving propagated messages, 170-171
RendAddrCompactor interface, 176
RendezvousEvent interface, 172-173
RendezvousListener interface, 172-173
RendezVousManager interface, 174
RendezVousService interface methods,

175-176
sample chat application, 445

RendezvousEvent interface, 172-173

RendezvousListener interface, 172-173

RendezVousManager interface, 174

RendezVousService interface
connecting and disconnecting from

rendezvous peers, 171-172
message propagation methods, 169-170
methods, 175-176
methods for receiving propagated

messages, 171

Resolver handler example, 134-135
creating query and response strings,

135-144
QueryHandler interface, 144-146
registering with ResolverService

instance, 146-151
unregistering handlers, 153-154

19_2344 index 5/15/02 9:40 AM Page 485

486 Resolver Protocol (sample chat application)

Resolver Protocol (sample chat
application), 445

Resolver Query Message, 128-129
sending, 151-152

Resolver Response Message, 130-131

Resolver service, 131-132. See also Peer
Resolver Protocol (PRP)

example Resolver handler, 134-135
creating query and response strings,

135-144
QueryHandler interface, 144-146

ExampleHandler class, 152-153
QueryHandler interface, 132-134
registering handlers with

ResolverService interface, 146-151
sample chat application, 445
sending queries, 151-152
sending responses, 154-159
unregistering handlers, 153-154

ResolverService instance, registering
handlers with, 146-151

resources. See online resources

response strings, creating (Resolver
handler example), 135-144

responses, sending, 154-159

RMI (Remote Method Invocation),
JXTA-RMI service, 450

Route Query Message, 279-280

Route Response Message, 280-281

router peers, 17-18
finding, 28
firewall/NAT traversal, 33-36

running. See executing

RVP. See Rendezvous Protocol (RVP)

S

sample chat application, 347
Chat service creation, 374

Initiate Chat Request Message, 374-381
Initiate Chat Response Message,

382-390
interface for, 391-403
sending chat messages, 390-391

JXTA Messenger application, 403
executing, 442-444
JxtaMessenger class, 433-441
user interface for, 403-433

Presence service creation, 348-349
interface for, 361-374
Presence Advertisement, 349-361

scripts, Shell, 192

search command, 62

search engines versus P2P, 7-8

secure pipes, 228-229

send command, 62

sending
messages, 74-75. See also Endpoint

Routing Protocol (ERP)
via Endpoint service, 263-268
via EndpointMessenger interface,

270-276
messages via Pipe service, 208

creating input pipes, 213-219
creating output pipes, 220-227
creating Pipe Advertisements, 209-213
starting and stopping JXTA

platform, 208
queries, 151-152
responses, 154-159

Service interface (modules), 293-294

service modules, 286

services
adding to peer group parameters

(listing 11.16), 404
Chat service (sample chat application),

creating, 374-403
core services, 93
creating, 309

adding to peer groups, 328-344
example service interface creation,

320-321
example service interface implementation,

321-328
example service messages, 309-317
listener interface creation, 317-319
testing new services, 344

defined, 20
Discovery service, 93-94

DiscoveryEvent class, 95-104
DiscoveryListener interface, 94-104

19_2344 index 5/15/02 9:40 AM Page 486

487Time To Live (TTL) attribute (messages)

DiscoveryService interface, 93-94
finding cached advertisements, 108-114
finding remote advertisements, 104-108
flushing cached advertisements, 114-118
sample chat application, 444

Endpoint service, 252-255
EndpointFilterListener interface, 276-277
EndpointMessenger interface, 270-276
EndpointServer and

EndpointPropagateClient classes,
268-269

receiving messages, 259-263
sending messages, 263-268

future of Project JXTA, 448-450
Membership service, 305-306
Peer Info service, 183-184

finding cached peer information, 193-199
finding remote peer information, 188-193
PeerInfoListener interface, 184-188

Pipe service, 207-208
bidirectional pipes, 236-249
PipeServer and PipeClient classes,

227-228
propagation pipes, 229-235
sample chat application, 445
secure pipes, 228-229
sending and receiving messages, 208-227

Presence service (sample chat
application), creating, 348-374

Rendezvous service, 161, 168-169
connecting and disconnecting from

rendezvous peers, 171-172
propagating messages, 169-170
RdvMonitor interface, 174-175
receiving propagated messages, 170-171
RendAddrCompactor interface, 176
RendezvousEvent interface, 172-173
RendezvousListener interface, 172-173
RendezVousManager interface, 174
RendezVousService interface methods,

175-176
sample chat application, 445

Resolver service, 131-132. See also Peer
Resolver Protocol (PRP)

example Resolver handler, 134-146
ExampleHandler class, 152-153
QueryHandler interface, 132-134
registering handlers with ResolverService

interface, 146-151

sample chat application, 445
sending queries, 151-152
sending responses, 154-159
unregistering handlers, 153-154

separating definition from
implementation, 320-328

services layer (JXTA), 43

Servlet HTTP, endpoint protocol
implementation, 255

set command, 62

setenv command, 62

SETI@Home project, 12

sftp command, 62

share command, 62

sharing files (history of P2P), 10-11

Shell. See JXTA Shell

Shell command, 62

Shell scripts, 192

simple peers, 17

single firewall/NAT traversal, 33-35

Solaris, installing JXTA Shell for, 50-51

Sql command, 62

Sqlshell command, 62

stale advertisements, 24

standards, online resources, 471-472

starting JXTA platform for Pipe
service, 208. See also executing

static NAT, 30

stopping JXTA platform for Pipe
service, 208

system properties, username and
password as, 102

T

Talk command, 62, 75-76

talking to peers, 75-76

TCP, endpoint protocol
implementation, 255

testing new services, 344

Time To Live (TTL) attribute
(messages), 27

19_2344 index 5/15/02 9:40 AM Page 487

488 TINI project

TINI project, 453

TLS, endpoint protocol
implementation, 255

“Tragedy of the Commons,” 11-12

transport implementations for
endpoints, 255-256

traversing NAT/firewall boundary,
32-33

double firewall/NAT traversal, 35-36
single firewall/NAT traversal, 33-35

troubleshooting JXTA Shell
configuration, 55-56

finding rendezvous peers, 56-58

Truscott,Tom (history of Usenet), 9

TTL (Time To Live) attribute
(messages), 27

U-V

unidirectional pipes, 202

Uninstjar command, 62

United Devices, 12

UNIX, installing JXTA Shell for, 50-51

unregistering handlers, 153-154

Usenet (history of P2P), 8-9

user interface for JXTA Messenger
application (sample chat application),
403-433

username as system property, 102

variables, environment (JXTA Shell),
63-65

Version command, 62

W

W3C (World Wide Web
Consortium), 471

wc command, 62

web sites
BEEP (Block Extensible Protocol), 472
downloading Project JXTA files, 471

Freenet, 468
Gnutella, 468
Groove Networks, 469
IAM Consulting’s JXTA Development

Toolkit, 469
IBM’s DeveloperWorks, 470
Jabber, 469
Java 2 SDK, 48
Java environment for Mac platform, 48
JXTA Community projects, 471
JXTA demo installer download, 49
JXTA Protocols Specification

project, 470
MojoNation, 468
Napster, 467
NNTP (Network News Transport

Protocol), 472
OpenP2P, 470
P2P Working Group, 471
Peer-To-Peer Central, 470
Presence Management Framework, 348
W3C (World Wide Web

Consortium), 471
XML 1.0 Standard, 471

who command, 62

whoami command, 62, 66, 69

Windows, installing JXTA Shell for,
49-50

World Peer Group, creating, 295-299

World Wide Web Consortium
(W3C), 471

writing. See creating

X-Z

XML (eXtensible Markup Language),
44-46

XML 1.0 Standard web site, 471

XML message format, 258

Yahoo! Messenger, 10

19_2344 index 5/15/02 9:40 AM Page 488

V
O

I
C

E
S

T

H
A

T

M
A

T
T

E
R

H O W T O C O N T A C T U S

V I S I T O U R W E B S I T E

On our web site, you’ll find information about our other books, authors, tables of
contents, and book errata.You will also find information about book registration and
how to purchase our books, both domestically and internationally.

E M A I L U S

Contact us at: nrfeedback@newriders.com

• If you have comments or questions about this book
• To report errors that you have found in this book
• If you have a book proposal to submit or are interested in writing for New Riders
• If you are an expert in a computer topic or technology and are interested in being a

technical editor who reviews manuscripts for technical accuracy

Contact us at: nreducation@newriders.com

• If you are an instructor from an educational institution who wants to preview
New Riders books for classroom use. Email should include your name, title, school,
department, address, phone number, office days/hours, text in use, and enrollment,
along with your request for desk/examination copies and/or additional information.

Contact us at: nrmedia@newriders.com
• If you are a member of the media who is interested in reviewing copies of New

Riders books. Send your name, mailing address, and email address, along with the
name of the publication or web site you work for.

B U L K P U R C H A S E S / C O R P O R AT E S A L E S

The publisher offers discounts on this book when ordered in quantity for bulk
purchases and special sales. For sales within the U.S., please contact: Corporate and
Government Sales (800) 382-3419 or corpsales@pearsontechgroup.com.
Outside of the U.S., please contact: International Sales (317) 581-3793 or
international@pearsontechgroup.com.

W R I T E TO U S

New Riders Publishing
201 W. 103rd St.
Indianapolis, IN 46290-1097

C A L L / FA X U S

Toll-free (800) 571-5840
If outside U.S. (317) 581-3500
Ask for New Riders
FA X : (317) 581-4663

W W W . N E W R I D E R S . C O M

W W W . N E W R I D E R S . C O M

JXTA BM 5/15/02 9:48 AM Page 489

ISBN: 0735711364
640 pages
US$49.99

ISBN: 0735711119
460 pages
US$49.99

ISBN: 0735710953
464 pages
US$39.99

ISBN: 0735710201
1152 pages
US$49.99
US$55.00

ISBN: 073571195X
With CD-ROM
990 pages
US$49.99

Jython for Java
Programmers

Robert Bill

Delve into the new and exciting
world of Jython, a speedy and
efficient scripting language
written in Java. After a brief
introduction, the book utilizes
examples to ensure that you
increase your programming
productivity and get the most
from Jython.

JSP and Tag Libraries
for Web Development

Wellington L.S. da Silva

This book, with its explanation
of tag library technology and
examples of implementation,
helps to bring the capabilities of
tag libraries to the arsenals of
current JSP programmers.

R E L A T E D N E W R I D E R S T I T L E S

Java for the Web with
Servlets, JSP, and EJB

Budi Kurniawan

This book teaches three of the
most important technologies for
Java web programming: servlets,
JSP, and EJB. After reading this
book, developers will be
brought up to date on all of the
latest technologies, including
the role of Web Services,
pseudo sessions, XML in Java
applications, and the latest revs
of JSP, servlets, and EJB.

Inside XML

Steven Holzner

Inside XML is a foundation book
that covers both the Microsoft
and non-Microsoft approach to
XML programming. It covers in
detail the hot aspects of XML,
such as DTD’s vs. XML
Schemas, CSS, XSL, XSLT,
Xlinks, Xpointers, XHTML,
RDF, CDF, parsing XML in Perl
and Java, and much more.

Inside XSLT

Steven Holzner

In order to work with XML fully,
you need to be up to speed with
XSLT, and this is the book to get
you there. Covering everything
from creating Xpath expressions
to transforming XML to HTML,
Inside XSLT will have you heading
straight down the road to
programming efficiency.

JXTA BM 5/15/02 9:48 AM Page 490

New Riders has partnered with

InformIT.com to bring technical

information to your desktop.

Drawing on New Riders authors

and reviewers to provide additional

information on topics you’re

interested in, InformIT.com has

free, in-depth information you

won’t find anywhere else.

As an InformIT partner, New Riders
has shared the wisdom and knowledge
of our authors with you online.
Visit InformIT.com to see what
you’re missing.

Solutions from experts you know and trust.

www.informit.com

www.informit.com � www.newriders.com

OPERATING SYSTEMS

WEB DEVELOPMENT

PROGRAMMING

NETWORKING

CERTIFICATION

AND MORE…

Expert Access.
Free Content.

� Master the skills you need,
when you need them

� Call on resources from
some of the best minds in
the industry

� Get answers when you need
them, using InformIT’s
comprehensive library or
live experts online

� Go above and beyond what
you find in New Riders
books, extending your
knowledge

JXTA BM 5/15/02 9:48 AM Page 491

You already know that New Riders brings you the Voices that Matter.

But what does that mean? It means that New Riders brings you the

Voices that challenge your assumptions, take your talents to the next

level, or simply help you better understand the complex technical world

we're all navigating.

Visit www.newriders.com to find:

Discounts on specific book purchases

Never before published chapters

Sample chapters and excerpts

Author bios and interviews

Contests and enter-to-wins

Up-to-date industry event information

Book reviews

Special offers from our friends and partners

Info on how to join our User Group program

Ways to have your Voice heard

OUR AUTHORS

PRESS ROOM

EDUCATORS

ABOUT US

CONTACT US

W W W . N E W R I D E R S . C O M

w
w

w
.n

ew
ri

d
er

s.
co

m

JXTA BM 5/15/02 9:48 AM Page 492

Colophon
Karl Weatherly, an award-winning photographer specializing in outdoor scenes, captured the image on the
cover of this book, a school of tropical fish.

This book was written and edited in Microsoft Word, and laid out in QuarkXPress.The fonts used
for the body text are Bembo and MCPdigital. It was printed on 50# Husky Offset Smooth paper at
VonHoffmann Graphics Inc. in Owensville, MO. Prepress consisted of PostScript computer-to-plate
technology (filmless process).The cover was printed at Moore Langen Printing in Terre Haute, Indiana,
on 12pt, coated on one side.

JXTA BM 5/15/02 9:48 AM Page 493

JXTA BM 5/15/02 9:48 AM Page 494

