Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

JXTA

Contents at a Glance

W N =

o 0 N & vt A

—

0
III
11
12
v
A

B

The Basics of JXTA

Introduction 3

P2P Concepts 15

Introducing JXTA P2P Solutions 39
JXTA Protocols

The Peer Discovery Protocol 83
The Peer Resolver Protocol 125
The Rendezvous Protocol 161

The Peer Information Protocol 177
The Pipe Binding Protocol 201

The Endpoint Routing Protocol 251
Peer Groups and Services 285
Putting It All Together

A Complete Sample Application 347
The Future of JXTA 447
Appendixes

Glossary 461

Online Resources 467

Index 473

JXTA

Brendon J. Wilson

New
Riders

www.newriders.com
201 West 103rd Street, Indianapolis, Indiana 46290

An Imprint of Pearson Education
Boston ® Indianapolis ® London ® Munich ® New York ® San Francisco

J XTA Publisher

Copyright © 2002 by New Riders Publishing David Dwyer
FIRST EDITION: 2002 . .

June, Associate Publisher
All rights reserved. No part of this book may be reproduced Stephanie Wall

or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any Production Manager

information storage and retrieval system, without written Gina Kanouse
permission from the publisher, except for the inclusion of Managing Editor

brief quotations in a review. Kristy Knoop

International Standard Book Number: 0-73571-234-4 .
Development Editor
Library of Congress Catalog Card Number: 2001096748 Rubi Olis
0605040302 7654321 . .
Project Editor
Interpretation of the printing code: The rightmost double- Stacia Mellinger
digit number is the year of the book’ printing; the right-
Product Marketing

Manager
Kathy Malmloff

most single-digit number is the number of the book’s
printing. For example, the printing code 02-1 shows that
the first printing of the book occurred in 2002.

Printed in the United States of America Publicity Manager
Susan Nixon

Trademarks Copy Editor

All terms mentioned in this book that are known to be Krista Hansing

trademarks or service marks have been appropriately capital- Ind
. . o ndexer
ized. New Riders Publishing cannot attest to the accuracy of
Cheryl Lenser

this information. Use of a term in this book should not be

regarded as affecting the validity of any trademark or service Manufacturing
mark. Coordinator
Java™ is a registered trademark of Sun Microsystems. Jim Conway

Book Designer
Warning and Disclaimer Louisa Klucznik

This book is designed to provide information about JXTA. Cover Designer

Every effort has been made to make this book as complete :]
Brainstorm Design, Inc.

and as accurate as possible, but no warranty or fitness is
implied. Cover Designer
Aren Howell

The information is provided on an as-is basis. The authors

and New Riders Publishing shall have neither liability nor Proofreader

responsibility to any person or entity with respect to any loss Debbie Williams

or damages arising from the information contained in this .

book or from the use of the discs or programs that may Composltlon.
Jeft Bredensteiner

accompany it.

K2
0’0

To alcohol! The cause of, and solution to, all of life’s
problems. . .oh, yeah, and my wife, Ashley, and parents,
Mae and Rod.

0,
0’0

Table of Contents

I The Basics of JXTA

1 Introduction 3
Introduction to Peer-to-Peer 3
Why Is Peer-to-Peer Important? 7
A Brief History of P2P 8
Introducing Project JXTA 12
Summary 14

2 P2P Concepts 15
Elements of P2P Networks 15
P2P Communication 22

Comparisons to Existing P2P
Solutions 36

Summary 37

3 Introducing JXTA P2P
Solutions 39
Core JXTA Design Principles 40
Introducing the JXTA Shell 48
Running the JXTA Shell 52
Navigating the JXTA Shell 61
Manipulating Peers 66
Manipulating Peer Groups 69
Manipulating Pipes 73
Talking to Other Peers 75
Extending the Shell Functionality 76
Summary 80

II

10

Contents

JXTA Protocols

The Peer Discovery Protocol 83
Introducing the Peer Discovery Protocol 83
The Discovery Service 93

Working with Advertisements 118
Summary 124

The Peer Resolver Protocol 125
Introducing the Peer Resolver Protocol 126
The Resolver Service 131

Summary 159

The Rendezvous Protocol 161
Introducing the Rendezvous Protocol 162
The Rendezvous Service 168

Summary 176

The Peer Information Protocol 177
Introducing the Peer Information Protocol 177
The Peer Info Service 183

Summary 199

The Pipe Binding Protocol 201
Introducing the Pipe Binding Protocol 202
The Pipe Service 207

Summary 249

The Endpoint Routing Protocol 251
Introduction to Endpoints 252

Using the Endpoint Service 258

Introducing the Endpoint Routing Protocol 278
The Endpoint Router Transport Protocol 283
Summary 284

Peer Groups and Services 285
Modules, Services, and Applications 286
The Peer Group Lifecycle 294
Working with Peer Groups 300
Creating a Service 309

Summary 344

Vii

viii Contents

III Putting It All Together

11 A Complete Sample Application 347
Creating the Presence Service 348
Creating the Chat Service 374
The JXTA Messenger Application 403
Summary 444

13 The Future of JXTA 447
Future Directions for Project JXTA 447
Participating in Project JXTA 453

Working with the Java Reference Implementation
Source Code 456

Summary 458

IV Appendixes
A Glossary 461

B Online Resources 467
P2P Companies and Organizations 467
P2P Magazines 469
Project JXTA Resources 470
Internet Standards and Standards Bodies 471

Index 473

Photo: John Harvey (www,johnharveyphoto.com)

About the Author

Brendon J. Wilson, a graduate of Simon Fraser University’s
Engineering Science program (www.ensc.sfu.ca), is a software engineer
specializing in object-oriented programming with a focus on

Java and Internet technologies. Brendon started using Java in 1996

as part of his undergraduate thesis project, a 3D robot manipulator simu-
lator, which went on to win Sun Microsystems’ Java3D

programming competition.

Since graduating from SFU, Brendon has worked at a number of
high-tech software-development companies, including the e-business
division of IBM’s Pacific Development Center in Burnaby, and a variety of
encryption and wireless startups around the world. Currently a Senior Software
Engineer at PKI Innovations, Inc. (www.pk3i.com), Brendon divides his time
between his job, his pursuit of his PEng (professional engineer) designation, and
investigations into all the latest Internet technologies. Occasionally he sleeps, too.

Brendon lives with his wife, Ashley, in Vancouver, Canada, where he is currently
recovering from an all-consuming addiction to The Simpsons. He can be contacted
through his web site at www.brendonwilson.com.

About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire
development process for JXTA. As the book was being written, these dedicated
professionals reviewed all the material for technical content, organization, and flow.
Their feedback was critical to ensuring that JXTA fits our readers’ need for the
highest-quality technical information.

William R. Bauer retired from the defense industry in 1997 to
help his talented and gorgeous wife raise their newborn son. He
currently has a small consulting practice catering primarily to
medical research. He had a diverse 30-year career in defense as a
software, hardware, and algorithm designer. His techniques for
measuring Dingle temperatures in solid-state physics and for real-

time measurement of pitch in voice processing are still in use.

Bill (a.k.a.Vasha) joined the JXTA project shortly after it became open-source. He
co-owns the JXTA-Wire and JXTA-httpd projects, and has learned a great deal from
the originator of those projects, Eric Pouyoul. Presently Bill is developing transports
and services optimized for JXTA’s Voice Over P2P (vop2p) project.

Chris Genly has more than 25 years of software engineering
experience in diverse subjects such as natural language processing,
compilers, and distributed computing. Current interests include
Java, P2P, and eXtreme Programming. Chris lives in the idyllic
town of Forest Grove, Oregon, with his wife and two children.

Acknowledgments

First, I'd like to thank Sun Microsystems and the Project JXTA development team for
creating the JXTA technology and releasing it to the JXTA Community.

Second, I'd like to thank all the members of the JXTA Community and JXTA
mailing lists for providing me with invaluable constructive criticism on early drafts of
the book. This feedback allowed me to tune the book and catch numerous errors early
in its development. More important, the community provided me with encourage-
ment when I needed it most.

Third, I'd like to thank all of those involved in the production of this book. In par-
ticular, I'd like to recognize Jeff Riley (I owe my life to him), Stephanie Wall, Rubi
Olis, Elise Walter, and Lisa Thibault at New Riders. I'd also like to thank New Riders
for not only giving me the opportunity to write this book, but also having the fore-
sight to allow me to release early drafts to the JXTA Community for review. At a time
when many companies are greedily hoarding intellectual property, it is encouraging to
see that a company like New Riders can recognize the benefit that it can realize from
contributing freely to an online community.

Fourth, I'd also like to thank my two phenomenal technical editors, William Bauer
and Chris Genly, for their insightful comments and flattering remarks. Without them,
this book wouldn’t have been half as useful as it is. John Harvey deserves a mountain
of credit for somehow making me look intelligent for the book’s photo, despite losing
several lenses in the process.

Fifth, I'd like to thank Mr. Paul Knipe, Mr. Mark Van Camp, Mr. Rod Osiowy, Dr.
John Dill, Dr. Ash Parameswaran, and the many other teachers I've had throughout my
secondary and post-secondary education. These are the people who encouraged me to
make the most of myself and to try new things. The future is in good hands as long as
we have dedicated teachers like these educating our children.

Finally, and most important, I'd like to thank my wife, Ashley; my parents, Mae and
Rod; and all of my friends for their love and support—oh, and for putting up with me
when I start ranting or babbling (my only two forms of “conversation”).

Xi

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas youd like to see us publish in, and any other words of wisdom you're
willing to pass our way.

As the Associate Publisher for New Riders Publishing, I welcome your comments.
You can fax, email, or write me directly to let me know what you did or didn’t like
about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book
and that, due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and share

them with the author and editors who worked on the book.

Fax: 317-581-4663
Email: stephanie.wall@newriders.com
Mail: Stephanie Wall

Associate Publisher

New Riders Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

xii

Preface

The explosion in the number of peer-to-peer (P2P) solutions has underlined
the importance of this technology to the continued growth and development
of the Internet. However, the proprietary and specialized nature of current
solutions highlights the need for a standard set of protocols to address the par-
ticular requirements of the P2P domain. The JXTA platform provides develop-
ers with a flexible, standards-based set of protocols and reference libraries.
Using JXTA, developers can focus on implementing their collaborative appli-
cations rather than on the specifics of P2P

technology.

The JXTA platform is the next stage of development in the maturing P2P
arena, a fundamental shift in the way people use the Internet. Using JXTA,
developers can create new applications that will communicate with any
number of distributed peers, providing distributed search, file sharing, and
collaboration services without relying on the traditional client/server hierar-
chy. The result is more robust and reliable applications that enable users to
fully realize the communication capabilities of the Internet.

What This Book Covers

This book presents a guided tour of the JXTA platform, including all the criti-
cal information required to begin producing P2P solutions built on top of
JXTA. Reference information on each of the JXTA protocols provides an
understanding of the underlying principles of P2P networking, and examples
built on the JXTA reference implementation provide the hands-on experience
necessary to become fluent in JXTA technology.

All examples in the book use the JXTA reference implementation written
in Java™, allowing the example code to be run on any device with a Java
Virtual Machine (JVM), thereby reaching the largest possible development
audience. For developers who want to use another development language, the
protocol reference information within the book is comprehensive enough to
allow an advanced developer to produce solutions that are compatible with
JXTA.

Chapter 1, “Introduction,” is a general introduction to the topic of peer-to-
peer (P2P) computing, including the history of the development of the P2P
paradigm, the advantages and disadvantages of P2P, and an introduction to
Project JXTA.

xiii

Chapter 2, “P2P Concepts,” introduces the basic concepts of P2P network-
ing, the problems posed by P2P, and the terminology required to understand
the rest of the book. This chapter provides a technical introduction to the
components required to implement a complete P2P network.

Chapter 3, “Introducing JXTA P2P Solutions,” introduces JXTA and the
solutions that it provides to address basic problems in P2P networking. It dis-
cusses the design philosophy, assumptions, capabilities, and limitations of JXTA.
The majority of the chapter is devoted to using the JXTA Shell application, to
familiarize the reader with the JXTA implementation of P2P, and to allow
some preliminary experimentation without requiring the reader to program
anything just yet. In addition, a small introduction on XML familiarizes the
reader with the form of messages used by all the JXTA protocols.

Chapter 4, “The Peer Discovery Protocol,” details the Peer Discovery
Protocol (PDP), which provides JXTA P2P applications with a mechanism for
discovering other peer resources. Without the PDP, a P2P client would be use-
less, incapable of finding and using the resources oftered by other peers. The
chapter elaborates on the purpose of the PDP, its use in JXTA applications,
and the format of PDP messages. Examples, using the JXTA Shell and Java
code written using the reference JXTA implementation, guide the reader
through the use of the PDP to discover other peer resources on the network.

Chapter 5, “The Peer Resolver Protocol,” discusses the Peer Resolver
Protocol (PRP), which provides P2P applications with a generic request-and-
response format to use when communicating with other peers. After a peer
has been discovered using the Peer Discovery Protocol, the PRP can be used
to send messages to the peer for processing and to receive messages from the
peer containing the results. This chapter details the purpose of the PRP, the
use of the PRP in JXTA applications, and the format of PRP messages; it also
guides the reader through example code that uses the PRP to send and receive
simple messages between two peers.

Chapter 6, “The Rendezvous Protocol,” details the Rendezvous Protocol
(RVP), used by a peer to connect to a rendezvous peer and have messages
propagated on its behalf to other peers that are also connected to the ren-
dezvous peer. Rendezvous peers provide a mechanism for peers to broadcast
messages to many peers without relying on a specific network transport. This
chapter provides information on the format of the RVP messages and the flow
of messages between a peer and the rendezvous peer. This chapter also covers
the Rendezvous service’s dual role, providing both a local interface to remote
rendezvous peers and rendezvous peer services to remote peers.

Xiv

Chapter 7, “The Peer Information Protocol,” discusses the Peer Information
Protocol (PIP). After a peer has been discovered using the Peer Discovery
Protocol, the status or capabilities of the peer might be required. The PIP pro-
vides a set of messages capable of querying a peer to obtain status information.
This chapter details the purpose of the PIP, the use of the PIP in JXTA appli-
cations, and the format of PIP messages; it also guides the reader through an
example application that uses the PIP to send and receive messages to com-
municate peer status information.

Chapter 8, “The Pipe Binding Protocol,” covers the Pipe Binding Protocol
(PBP). Pipes in JXTA provide a virtual communication channel connecting
endpoints on the P2P network. The PBP allows peer group members to estab-
lish a connection to another peer, independent of the transport mechanism.
This chapter details the purpose of the PBP, the use of the PBP in P2P appli-
cations, and the format of PBP messages; it also guides the reader through an
example application that uses the PBP to exchange messages over a pipe with
another peer.

Chapter 9, “The Endpoint Routing Protocol,” discusses the Endpoint
Routing Protocol (ERP). Due to the ad hoc nature of a P2P network, a
mechanism is required to enable messages to be routed between peers. The
ERP provides peers with a mechanism for determining a route to an end-
point. This routing mechanism is provided transparently by the Endpoint
service, allowing a peer to send messages without needing to take special steps
to handle communication via intermediary peers. This chapter details the pur-
pose of the ERP and the format of the ERP’s messages, and it guides the user
through an example application that uses the ERP and the Endpoint service
to send messages to another peer endpoint.

Chapter 10, “Peer Groups and Services,” covers the use of peer groups to
segment the network space and provide new services on the JXTA network.
The chapter discusses peer group creation and configuration, as well the
process of bootstrapping the JXTA platform. Much coverage of the topic of
modules is provided, and the chapter’s example demonstrates the creation of a
new peer group service and the creation of a peer group configured to use the
new peer group service.

Chapter 11,“A Complete Sample Application,” guides the reader through
the process of creating a complete P2P solution using all the JXTA protocols.
Examples from each of the preceding chapters are used as the foundation of
the application and are brought together to provide all the elements of the
final P2P solution.

XV

Chapter 12, “The Future of JXTA,” outlines some of the future directions
currently being pursued by JXTA project groups, including implementations
of JXTA for other languages and bindings to other network transports. In
addition, this chapter introduces some of the other community projects that
build on JXTA to provide services and applications.

Two appendixes provide a glossary of terms and three-letter acronyms
(TLA) used in the book, as well as a list of related online resources.

Who Is this Book For?

This book is targeted at software developers doing peer-to-peer application
development who are interested in detailed information on the JXTA plat-
form technologies and concepts. This book assumes an intermediate level of
Java development knowledge and a basic knowledge of networking.
Developers who are not familiar with Java should still be able to understand
and run the book’s example code with a minimum of difficulty.

Conventions Used in this Book
This book follows a few typographical conventions:
= A new term is set in italics the first time it is introduced.

» Program text, functions, variables, and other “computer language”
are set in a fixed-pitch font—for example, <Person>.

= When a line of code wraps to a new line, a code continuation character
(=) is used to indicate.

When there’s additional information to the discussion, I'll add a sidebar that
looks like this:

The Tragedy of the Commons

In many communities that share resources, there is a risk of suffering from the Tragedy of the
Commons: the overuse of a shared resource to the point of its destruction. The Tragedy of the
Commons originally referred to the problem of overgrazing on public lands, but the term can
apply to any public resource that can be used without restriction.

XVvi

When there’s a tip that I want to share, I'll add a note that looks like this:

Note

This sets a system property called net.jxta.tls.password to the password value provided after the
equals (=) sign and sets a system property called net.jxta.tls.principal to the username pro-
vided. When you start the Shell from the command line and include these parameters, the Shell
starts immediately without prompting for your username and password.

What You’ll Need to Try the Examples

The examples and screenshots in this book were created using the Java 2 SDK
Standard Edition version 1.3.1 from Sun Microsystems running on Windows
2000. Although Java runs on a variety of operating systems, it’s still safe to say
that most people are running Windows. However, all the example applications
should run on any operating system with an implementation of the Java 2
SDK and JVM version 1.3.1 or later. If you are running the examples on a
non-Windows system, you might need to translate some commands from
Windows to your own operating system’s equivalent commands.

To download the Java 2 SDK Standard Edition for Windows 2000 or a
number of other platforms, go to www.javasoft.com/j2se/ and download the
appropriate SDK for your operating system. For Mac users, a Mac implemen-
tation of the Java 2 Standard Edition SDK is available from www.apple.com/java/,
but only for users of the Mac OS X operating system.

All the Java source code for the examples discussed in this book is available
for download from the New Riders web site at www.newriders.com.

XVii

I

The Basics of JXTA

1 Introduction
2 P2P Concepts
3 Introducing JXTA P2P Solutions

Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introduction

BER—TO—PEER (P2P) TECHNOLOGY ENABLES any network-aware device to pro-
vide services to another network-aware device. A device in a P2P network can
provide access to any type of resource that it has at its disposal, whether docu-
ments, storage capacity, computing power, or even its own human operator.
Although P2P might sound like a dot-com fad, the technology is a natural
extension of the Internet’s philosophy of robustness through decentralization.
In the same manner that the Internet provides domain name lookup (DNS),
World Wide Web, email, and other services by spreading responsibility among
millions of servers, P2P has the capacity to power a whole new set of robust
applications by leveraging resources spread across all corners of the Internet.

Introduction to Peer-to-Peer

Most Internet services are distributed using the traditional client/server archi-
tecture, illustrated in Figure 1.1. In this architecture, clients connect to a server
using a specific communications protocol, such as the File Transfer Protocol
(FTP), to obtain access to a specific resource. Most of the processing involved
in delivering a service usually occurs on the server, leaving the client relatively
unburdened. Most popular Internet applications, including the World Wide
Web, FTP, telnet, and email, use this service-delivery model.

4 Chapter 1 Introduction

64.40.111.90

142.58.110.2

Client Responsibilities:
- Sending commands to request a service
- Receiving responses to a request for a service

Server Responsibilities:
- Receiving commands requesting a service

- Processing service requests and executing the requested service
- Sending response with results of the requested service

216.110.42.176 64.40.111.48

Figure 1.1 Client/server architecture.

Unfortunately, this architecture has a major drawback. As the number of clients
increases, the load and bandwidth demands on the server also increase, eventu-
ally preventing the server from handling additional clients. The advantage of
this architecture is that it requires less computational power on the client side.
Ironically, most users have been persuaded to upgrade their computer systems
to levels that are ludicrously overpowered for the most popular Internet appli-
cations: surfing the web and retrieving email.

The client in the client/server architecture acts in a passive role, capable of
demanding services from servers but incapable of providing services to other
clients. This model of service delivery was developed at a time when most
machines on the Internet had a resolvable static IP address, meaning that all
machines on the Internet could find each other easily using a simple name
(such as yourmachine.com). If all machines on the network ran both a server and
a client, they formed the foundation of a rudimentary P2P network.

As the Internet grew, the finite supply of IP addresses prompted service
providers to begin dynamically allocating IP addresses to machines each time
they connected to the network through dial-up connections. The dynamic
nature of these machines’ IP addresses effectively prevented users from running
useful servers. Although someone could still run a server, that user couldn’t
access it unless he knew the machine’s IP address beforehand. These computers
form the “edge” of the Internet: machines that are connected but incapable of
easily participating in the exchange of services. For this reason, most useful ser-
vices are centralized on servers with resolvable IP addresses, where they can be
reached by anyone who knows the server’s easy-to-remember domain name.

Introduction to Peer-to-Peer

Another reason that most clients’ machines can’t run servers is that they are
a part of a private network, usually run by their own corporation’s IT depart-
ment. This private network is usually isolated from the Internet by a firewall, a
device designed to prevent arbitrary connections into and out of the private
network. Corporations usually create a private network to secure sensitive cor-
porate information as well as to prevent against network abuse or misuse. The
side effect of this technology is that a computer outside the private network
can’t connect to a computer within the private network to obtain services.

Consider the amount of computing and storage power that these client
machines represent! Assume that only 10 million 100MHz machines are con-
nected to the Internet at any one time, each possessing only 100MB of unused
storage space, 1000bps of unused bandwidth, and 10% unused processing
power. At any one time, these clients represent 10 petabytes (PB) (10" bytes) of
available storage space, 10 billion bps of available bandwidth (approximately
1.25GBps), and 10°* MHz of wasted processing power! These are conservative
estimates that only hint at the enormous untapped potential waiting to be
unleashed from the “edge” of the Internet.

P2P is the key to realizing this potential, giving individual machines a
mechanism for providing services to each other. Unlike the client/server archi-
tecture, P2P networks don’t rely on a centralized server to provide access to
services, and they usually operate outside the domain name system. As shown
in Figure 1.2, P2P networks shun the centralized organization of the
client/server architecture and instead employ a flat, highly interconnected
architecture. By allowing intermittently connected computers to find each
other, P2P enables these machines to act as both clients and servers that can
determine the services available on the P2P network and engage those services
in some application-specific manner.

The main advantage of P2P networks is that they distribute the responsibil-
ity of providing services among all peers on the network; this eliminates
service outages due to a single point of failure and provides a more scalable
solution for offering services. In addition, P2P networks exploit available
bandwidth across the entire network by using a variety of communication
channels and by filling bandwidth to the “edge” of the Internet. Unlike
traditional client/server communications, in which specific routes to popular
destinations can become overtaxed (for example, the route to Amazon.com),
P2P enables communication via a variety of network routes, thereby reducing
network congestion.

6 Chapter 1 Introduction

64.40.111.90

Peer Responsibilities, as a Client on the Network:
- Sending commands to other peers to request a service
- Receiving responses to a request for a service

Peer Responsibilities, as a Server:

- Receiving commands from other peers requesting a service

- Processing service requests and executing the requested service
- Sending response with results of the requested service

- Propogating requests for service to other peers

216.110.42.176 64.40.111.48

Figure 1.2 Peer-to-peer architecture.

P2P has the capability of serving resources with high availability at a much
lower cost while maximizing the use of resources from every peer connected
to the P2P network. Whereas client/server solutions rely on the addition of
costly bandwidth, equipment, and co-location facilities to maintain a robust
solution, P2P can offer a similar level of robustness by spreading network and
resource demands across the P2P network. Companies such as Intel are already
using P2P to reduce the cost of distributing documents and files across the
entire company.

Unfortunately, P2P sufters from some disadvantages due to the redundant
nature of a P2P network’s structure. The distributed form of communications
channels in P2P networks results in service requests that are nondeterministic
in nature. For example, clients requesting the exact same resource from the
P2P network might connect to entirely different machines via different com-
munication routes, with different results. Requests sent via a P2P network
might not result in an immediate response and, in some cases, might not result
in any response. Resources on a P2P network can disappear at times as the
clients that host those resources disconnect from the network; this is different
from the services provided by the traditional Internet, which have most
resources continuously available.

Why Is Peer-to-Peer Important?

However, P2P can overcome all these limitations. Although resources might
disappear at times, a P2P application might implement functionality to mirror
the most popular resources over multiple peers, thereby providing redundant
access to a resource. Greater numbers of interconnected peers reduce the
likelihood that a request for a service will go unanswered. In short, the very
structure of a P2P network that causes problems can be used to solve them.

Why Is Peer-to-Peer Important?

Although P2P gained notoriety as a means for illegally distributing copy-
righted intellectual property, P2P has more to offer the computing world than
easy access to stolen music or video files. To illustrate the difterence between
the way things are done now and how P2P could provide more useful and
robust solutions, consider the following example.

To find some specific information on the Internet, I usually point my web
browser to my favorite search engine, Google, and submit a search query.
Most times, I'll receive a list of several thousand results, many of which are
unrelated, are out-of-date, or worse yet, point to resources that no longer exist.
How frustrating!

One of the problems with the current search engine solution lies in the
centralization of knowledge and resources. Google relies on a central database
that is updated daily by scouring the Internet for new information. Due to the
number of indexed web pages in its database (more than 1.6 billion), not every
entry gets updated every day. As a result of this shortcoming, the information
in the Google database might not reflect the most up-to-date information
available, thus diminishing the usefulness of its results for any given search
query.

The search engine technology has a number of other disadvantages:

= It requires a lot of equipment. Google, for example, runs a Linux cluster

of 10,000 machines to provide its service.

= If the search engine goes offline (due to, say, a network outage), all the
search engine’s information is unavailable.

= Due to the size of the Internet, the search engine cannot provide a
comprehensive index of the Internet.

» Search engines can’t interface with information stored in a corporate

5, ¢

web site’s database, meaning that the search engine can’t “see” some

information.

8

Chapter 1 Introduction

A similar service could be implemented using P2P technology, augmenting the
service with additional desirable properties. Imagine if every person could run
a personal web server on a desktop computer! Suppose that, in addition to
serving content from the user’s machine, this server had the capability to
process requests for information about the documents managed by the server.
A user’s server could receive a query, check the documents that it manages for
a match, and respond to the query with a list of matching documents.

The user’s server would be responsible for indexing the documents that it
made available and therefore would be capable of providing more accurate,
up-to-date information on the user’s documents to anyone submitting a search
query. The task of indexing a single user’s documents would be much more
manageable than the task facing Google (a couple dozen web pages versus
billions of pages). Corporations could provide gateways to connect their own
web sites’ databases of information to the P2P network, providing searchable
access to information that the search engines currently can’t reach.

The system would have this added advantage: If the user’s server discon-
nected from the network, the search service would also become unavailable;
users searching the network wouldn’t receive results for resources that were
unavailable. As someone searching for information, I would be almost guaran-
teed that any result I found using the system would be available, reducing
wasted search time. I could even sort search results from the entire network to
determine which information might suit my needs better based on various
characteristics (such as the responsiveness of the server hosting a resource or
the number of servers hosting a copy of the same resource).

This example application of P2P technology isn’t perfect. For one thing,
anyone wanting to drive tratfic to a site could return that site as a match to
any search query. However, the example illustrates the underlying principle of
P2P: to enable anyone to offer services over a network. Until now, the tradi-
tional Internet experience has been mostly passive. Like the desktop publishing
revolution of the mid-1980s, P2P promises to revolutionize the exchange of
information.

A Brief History of P2P

Peer-to-peer has always existed, but it hasn’t always been recognized as such;
servers with fixed or resolvable IP addresses have always had the capability to
communicate with other servers to access services. A number of pre-P2P
applications, such as email and the domain name system, built on these capa-
bilities to provide distributed networks, but one such application, Usenet,
stands out from the others.

A Brief History of P2P

Usenet was created in 1979 by two North Carolina grad students, Tom
Truscott and Jim Ellis, to provide a way for two computers to exchange infor-
mation in the early days before ubiquitous Internet connectivity. Their first
iteration allowed a computer to dial another computer, check for new files,
and download those files; this was done at night to save on long-distance tele-
phone charges. The system evolved into the massive newsgroup system that it
is today. However, as large as Usenet is, it has a few properties that help distin-
guish it as probably the first P2P application. Usenet has no central managing
authority—the distribution of content is managed by each node, and the con-
tent of the Usenet network is replicated (in whole or in part) across its nodes.

One of the most interesting things about Usenet is what it is: nothing!
Usenet isn’t a piece of software or a network of servers; although it requires
software and servers to operate, these things don’t truly define Usenet. At its
core, Usenet is simply a way for machines to talk to each other to allow news
messages to be posted and disseminated over a network. By providing a well-
defined protocol, the Network News Transport Protocol (Internet Engineering
Task Force RFC 977), the widest possible number of machines can participate
independently to provide services. This distribution of responsibility is what
distinguishes Usenet, making it recognizable as the first true, though rudimen-
tary, application of P2P technology.

Since Usenet, the most popular P2P applications have fallen into one
of three major categories: instant messaging, file sharing, and distributed
computing.

Instant Messaging (IM)

When Mirabilis released ICQ (www.icq.com) in November 1996, it gave its users
a faster way to communicate with friends than traditional email. ICQ allows
users to be notified when their friends come online and to send instant mes-
sages to their friends. In addition to its main capability of instant messaging,
ICQ allows users to exchange files. Though classified as a P2P application,
ICQ relies on a hybrid of the P2P and client/server architectures to provide
its service, as shown in Figure 1.3. ICQ uses a central server to monitor which
users are currently online and to notify interested parties when new users
connect to the network. All other communication between users is conducted
in a P2P fashion, with messages flowing directly from one user’s machine to
another’s with no server intermediary.

10 Chapter 1 Introduction

64.40.111.90

Client Responsibilities:

- Registering and deregistering available services with the server

- Sending commands to a server to find a specific service

- Receiving responses from a server containing a list of peers
with the desired service

- Sending commands to other peers to request a specific service

- Receiving responses to a request for a service from a specific peer

- Receiving commands from other peers requesting a specific service

- Processing service requests and executing the requested service

- Sending a response to a peer’s request for a service

Server Responsibilities:

- Registering and deregistering peers’
available services

- Receiving commands requesting the
location of a specific service

- Searching available services registered by
peers

- Sending response with location of
requested service

216.110.42.176 64.40.111.48

Figure 1.3 Hybrid P2P architecture.

Since its unveiling, ICQ has had many imitators, including MSN Messenger
(www.messenger.msn.com), AOL Internet Messenger (www.aol.com/aim), and Yahoo!
Messenger (www.messenger.yahoo.com). Sadly, these applications are not compati-
ble; each relies on its own proprietary communication protocol. As a result of
this incompatibility, users must download different client software and go
through a separate registration process for each network. Because most users
choose to avoid this inconvenience, these networks have grown into com-
pletely separate user communities that cannot interact.

More recently, various software developers have tried to bridge these sepa-
rate communities by reverse-engineering the IM protocols and making new
client software. One such application, Jabber (www.jabber.com), provides gateways
to all major IM services, allowing users to interact with each other across the
various IM networks. This attempt has met with resistance from service
providers, prompting AOL to change its communication protocol in an
attempt to block Jabber clients.

File Sharing

Napster (www.napster.com) burst onto the Internet stage in 1999, providing users
with the capability to swap MP3 files. Napster employs a hybrid P2P solution
similar to ICQ, relying on a central server to store a list of MP3 files on each
user’s machine. This server is also responsible for allowing users to search that
list of available files to find a specific song file and its host. File transfer func-
tionality is coordinated directly between peers without a server intermediary.
In addition to its main file-sharing functionality, Napster provides a chat func-
tion to allow users to send text messages to each other.

A Brief History of P2P

Taking its cue from Napster, but noting the legal implications of enabling
copyright infringement, the Gnutella project (www.gnutelliums.com) took the
file-sharing concept pioneered by Napster one step further and eliminated the
need for a central server to provide search functionality. The Gnutella net-
work’s server independence, combined with its capability to share any type of
file, makes it one of the most powerful demonstrations of P2P technology.

Peers on the Gnutella network are responsible not only for serving files, but
also for responding to queries and routing messages to other peers. Note that
although Gnutella doesn’t require a central server to provide search and IP
address resolution functionality, connecting to the Gnutella network still
requires that a peer know the IP address of a peer already connected to the
P2P network. For this reason, a number of peers with static or resolvable IP
addresses have been established to provide new peers with a starting point for
discovering other peers on the network.

Eliminating the reliance on a central server has raised a number of new
issues:

= How do peers distribute messages to each other without flooding the
network?

» How do peers provide content securely and anonymously?

» How can the network encourage resource sharing?

Otbher file-sharing P2P variants, including Freenet (freenet.sourceforge.net),
Morpheus (www.musiccity.com), and MojoNation (www.mojonation.net), have
stepped into the arena to address these issues. Each of these applications
addresses a specific issue. Freenet provides decentralized anonymous content
storage protected by strong cryptography against tampering. Morpheus pro-
vides improved search capabilities based on metadata embedded in common
media formats. MojoNation uses an artificial currency, called Mojo, to enforce
resource sharing.

The Tragedy of the Commons

In many communities that share resources, there is a risk of suffering from the “Tragedy of the
Commons": the overuse of a shared resource to the point of its destruction. The Tragedy of the
Commons originally referred to the problem of overgrazing on public lands, but the term can apply
to any public resource that can be used without restriction.

In some P2P systems, peers can use the resources (bandwidth and storage space) of others on the
network without making resources of their own available to the network, thereby reducing the
value of the network. As more users choose not to share their resources, those peers that do share
resources come under increased load and, in many ways, the network begins to revert to the classic
client/server architecture. Taken to its logical conclusion, the network eventually collapses, benefit-
ing no one.

11

12

Chapter 1 Introduction

Newer P2P solutions have tried to prevent the Tragedy of the Commons by incorporating checks to
ensure that users share resources. Lime Wire (www.limewire.com), for example, allows users to
restrict downloads based on the number of files that a requesting client is sharing with the net-
work. MojoNation (www.mojonation.net) takes this model one step further and incorporates a
system of currency that users earn by sharing resources and then spend to access resources.

Distributed Computing

Distributed computing is a way of solving difficult problems by splitting the
problem into subproblems that can be solved independently by a large
number of computers. Although the most popular applications of distributed
computing have not been P2P solutions, it is important to note the break-
through work that has been accomplished by projects such as SETI@Home
(setiathome.berkeley.edu) and Distributed.net (distributed.net) and companies
such as United Devices (www.ud.com).

In 1996, SETI@Home began distributing a screen saver—based application
to users, to allow them to process radio-telescope data and contribute to the
search for extraterrestrial life. Since then, it has signed up more than 3 million
users (of which more than a half million are active contributors). In a similar
project started in 1997, Distributed.net used the computing power of its users
to crack previously unbreakable encrypted messages. In both cases, the client
software contacts a server to download its portion of the problem being
solved; until the problem is solved, no further communication with the server
is required.

In the future, it is expected that distributed computing will evolve to take
tull advantage of P2P technology to create a marketplace for spare computing
power.

Introducing Project JXTA

As you probably noticed, most of the P2P solutions overlap in some shape or
form: ICQ provides instant messaging plus a bit of file sharing. Napster pro-
vides file sharing plus a bit of instant messaging. You could even say that
Gnutella provides file sharing, plus a bit of distributed computing, due to the
way that peers take on the task of routing messages across the network.

Regrettably, the current applications of P2P tend to use protocols that are
proprietary and incompatible in nature, reducing the advantage offered by
gathering devices into P2P networks. Each network forms a closed commu-
nity, completely independent of the other networks and incapable of leverag-
ing their services.

Introducing Project JXTA

Until now, the excitement of exploring the possibilities of P2P technology
has overshadowed the importance of interoperability and software reuse. To
evolve P2P into a mature solution platform, developers need to refocus their
efforts from programming P2P network fundamentals to creating P2P applica-
tions on a solid, well-defined base. To do this, P2P developers need a common
language to allow peers to communicate and perform the fundamentals of P2P
networking.

Realizing this need for a common P2P language, Sun Microsystems formed
Project JXTA (pronounced juxtapose or juxta), a small development team
under the guidance of Bill Joy and Mike Clary, to design a solution to serve
all P2P applications. At its core, JXTA is simply a set of protocol specifications,
which is what makes it so powerful. Anyone who wants to produce a new P2P
application is spared the difficulty of properly designing protocols to handle
the core functions of P2P communication.

What Does JXTA Mean?

The name JXTA is derived from the word juxtapose, meaning to place two entities side by side or
in proximity. By choosing this name, the development team at Sun recognized that P2P solutions
would always exist alongside the current client/server solutions rather than replacing them
completely.

The JXTA v1.0 Protocols Specification defines the basic building blocks and
protocols of P2P networking:

= Peer Discovery Protocol—Enables peers to discover peer services on
the network

= Peer Resolver Protocol—Allows peers to send and process generic
requests

» Rendezvous Protocol—Handles the details of propagating messages
between peers

= Peer Information Protocol—Provides peers with a way to obtain sta-
tus information from other peers on the network

» Pipe Binding Protocol—Provides a mechanism to bind a virtual com-
munication channel to a peer endpoint

= Endpoint Routing Protocol—Provides a set of messages used to
enable message routing from a source peer to a destination peer

The JXTA protocols are language-independent, defining a set of XML mes-
sages to coordinate some aspect of P2P networking. Although some developers
in the P2P community protest the use of such a verbose language, the choice
of XML allows implementers of the JXTA protocols to leverage existing

13

14

Chapter 1 Introduction

toolsets for XML parsing and formatting. In addition, the simplicity of the
JXTA protocols makes it possible to implement P2P solutions on any device
with a “digital heartbeat,” such as PDAs or cell phones, further expanding the
number of potential peers.

In April 2001, Bill Joy placed Project JXTA in the hands of the P2P devel-
opment community by adopting a license based on the Apache Software
License Version 1.1. In addition to maintaining the JXTA v1.0 Protocols
Specification, Project JXTA is responsible for the development of reference
implementations of the JXTA platform and source code control for a variety
of JXTA Community projects. Currently, Project JXTA has a reference imple-
mentation available in Java, with implementations in C, Objective-C, Ruby,
and Perl 5.0 under way. At this time, Project JXTA houses a variety of JXTA
Community projects that are applying JXTA technology in diverse fields such
as content management, artificial intelligence, and secure anonymous payment
systems.

Summary

This chapter provided an introduction to P2P and outlined the problems of
the traditional client/server architecture that P2P can be used to solve. The
advantages and shortcomings of current P2P solutions were presented, and the
JXTA solution was briefly introduced.

The next chapter examines the common problems that face P2P imple-
mentations and how they can be solved. These solutions are presented inde-
pendently of the JXTA technology but use the JXTA terminology. This allows
the chapter to provide a high-level overview of P2P that doesn’t overwhelm
the reader with JXTA-specific details.

Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

P2P Concepts

IT’s NECESSARY TO INTRODUCE THE TERMINOLOGY and concepts of JXTA and

place them in the general framework that’s common to all P2P networks. This
chapter introduces the terminology used to describe aspects of P2P networks,
the components common to all P2P solutions (including those not built using
JXTA technology), and the problems and solutions inherent in P2P networks.

Elements of P2P Networks

P2P is the solution to a straightforward question: How can you connect a set
of devices in such a way that they can share information, resources, and ser-
vices? On the surface, it seems a simple question, but to answer it properly
requires answering several implied questions:

» How does one device learn of another device’s presence?

» How do devices organize to address common interests?

» How does a device make its capabilities known?

» What information is required to uniquely identify a device?

» How do devices exchange data?

16

Chapter 2 P2P Concepts

All P2P networks build on fundamental elements to provide the answers to
these questions and others. Unfortunately, many of these elements are assumed
or implied by proprietary P2P networks and are hard-coded into many P2P
applications’ implementations, resulting in inflexibility. For example, the major-
ity of current P2P solutions assumes the use of TCP as a network transport
mechanism and cannot operate in any other network environment. Flexible
P2P solutions need a language that explicitly declares all of the variables in
any P2P solution.

The following sections define the basic terminology of P2P networking.
I've tried to provide definitions at this point that use the JXTA terminology
while omitting the JXTA-specific implementation details. This will help you
learn the language of JXTA and P2P without being overwhelmed by JXTA-
specific details.

Peers

A peer is a node on a P2P network that forms the fundamental processing unit
of any P2P solution. Until now, you might have described a peer as an applica-
tion running on a single computer connected to a network such as the
Internet, but that limited definition wouldn’t capture the true function of a
peer and all its possible incarnations. This limited definition discounts the pos-
sibility that a peer might be an application distributed over several machines or
that a peer might be a smaller device, such as a PDA, that connects to a net-
work indirectly, such as via a synching cradle. A single machine might even be
responsible for running multiple peer instances.

To encompass all these facets, this book defines a peer as follows:

Any entity capable of performing some useful work and communicating
the results of that work to another entity over a network, either directly
or indirectly.

The definition of useful work depends on the type of peer. Three possible types
of peers exist in any P2P network:

= Simple peers

= Rendezvous peers

= Router peers
Each peer on the network can act as one or more types of peer, with each

type defining a different set of responsibilities for the peer to the P2P network
as a whole.

Elements of P2P Networks

Simple Peers

A simple peer is designed to serve a single end user, allowing that user to pro-
vide services from his device and consuming services provided by other peers
on the network. In all likelihood, a simple peer on a network will be located
behind a firewall, separated from the network at large; peers outside the fire-
wall will probably not be capable of directly communicating with the simple
peer located inside the firewall.

Because of their limited network accessibility, simple peers have the least
amount of responsibility in any P2P network. Unlike other peer types, they are
not responsible for handling communication on behalf of other peers or serv-
ing third-party information for consumption by other peers.

Rendezvous Peers

Taken literally, a rendezvous is a gathering or meeting place; in P2P, a ren-
dezvous peer provides peers with a network location to use to discover other
peers and peer resources. Peers issue discovery queries to a rendezvous peer,
and the rendezvous provides information on the peers it is aware of on the
network. How a rendezvous peer discovers other peers on its local network
will be discussed in the section “P2P Communication,” later in this chapter.

A rendezvous peer can augment its capabilities by caching information on
peers for future use or by forwarding discovery requests to other rendezvous
peers. These schemes have the potential to improve responsiveness, reduce net-
work traffic, and provide better service to simple peers.

A rendezvous peer will usually exist outside a private internal network’s
firewall. A rendezvous could exist behind the firewall, but it would need to be
capable of traversing the firewall using either a protocol authorized by the
firewall or a router peer outside the firewall.

Router Peers

A router peer provides a mechanism for peers to communicate with other
peers separated from the network by firewall or Network Address Translation
(NAT) equipment. A router peer provides a go-between that peers outside the
firewall can use to communicate with a peer behind the firewall, and vice
versa. This technique of firewall and NAT traversal is discussed in detail in the
upcoming section “Challenges to Direct Communication.”

To send a message to a peer via a router, the peer sending the message must
first determine which router peer to use to communicate with the destination
peer. This routing information provides a mechanism in P2P to replace tradi-
tional DNS, enabling an intermittently connected device with a dynamic IP

17

18

Chapter 2 P2P Concepts

address to be found on the network. In a similar manner to the way that DNS
translates a simple name to an IP address, routing information provides a map-
ping between a unique identifier specifying a remote peer on the network and
a representation that can be used to contact the remote peer via a router peer.

In simple systems, routing information might consist solely of resolving an
I[P address and a TCP port for a given unique identifier. A more complex sys-
tem might provide routing information consisting of an ordered list of router
peers to use to properly route a message to a peer. Routing a message through
multiple router peers might be necessary to allow two peers to communicate
by using a router peer to translate between two different and incompatible
network transports.

Peer Groups

Before JXTA, the proprietary and specialized nature of P2P solutions and
their associated protocols divided the usage of the network space according to
the application. If you wanted to perform file sharing, you probably used the
Gnutella protocol and could communicate only with other peers using
the Gnutella protocol; similarly, if you wanted to perform instant messaging,
you used ICQ and could communicate only with other peers also using ICQ.
The protocols’ incompatibilities effectively divided the network space based
on the application being used by the peers involved. If you consider a P2P sys-
tem in which all clients can speak the same set of protocols, as they can in
JXTA, the concept of a peer group is necessary to subdivide the network
space. As you would probably expect, a peer group is defined as follows:

A set of peers formed to serve a common interest or goal dictated by the
peers involved. Peer groups can provide services to their member peers
that aren’t accessible by other peers in the P2P network.

Peer groups divide the P2P network into groups of peers with common goals
based on the following:

» The application they want to collaborate on as a group. A peer
group is formed to exchange service that the members do not want
to have available to the entire population of the P2P network. One
reason for doing this could be the private nature of the data used by
the application.

= The security requirements of the peers involved. A peer group can

employ authentication services to restrict who can join the group and
access the services offered by the group.

Elements of P2P Networks

= The need for status information on members of the group.
Members of a peer group can monitor other members. Status informa-
tion might be used to maintain a minimum level of service for the peer
group’s application.

Peer group members can provide redundant access to a service, ensuring that
a service is always available to a peer group as long as at least one member is
providing the service.

Network Transport

To exchange data, peers must employ some type of mechanism to handle the
transmission of data over the network. This layer, called the network transport, is
responsible for all aspects of data transmission, including breaking the data into
manageable packets, adding appropriate headers to a packet to control its desti-
nation, and in some cases, ensuring that a packet arrives at its destination. A
network transport could be a low-level transport, such as UDP or TCP, or a
high-level transport, such as HTTP or SMTP.

The concept of a network transport in P2P can be broken into three con-
stituent parts:

= Endpoints—The initial source or final destination of any piece of data
being transmitted over the network. An endpoint corresponds to the net-
work interfaces used to send and receive data.

» Pipes—Unidirectional, asynchronous, virtual communications channels
connecting two or more endpoints.

= Messages—Containers for data being transmitted over a pipe from one
endpoint to another.

To communicate using a pipe, a peer first needs to find the endpoints, one for
the source of the message and one for each destination of the message, and
connect them by binding a pipe to each of the endpoints. When bound this
way, the endpoint acting as a data source is called an oufput pipe and the end-
point acting as a data sink is called an input pipe. The pipe itself isn’t responsible
for actually carrying data between the endpoints; it’s merely an abstraction
used to represent the fact that two endpoints are connected. The endpoints
themselves provide the access to the underlying network interface used for
transmitting and receiving data.

To send data from one peer to another, a peer packages the data to be
transmitted into a message and sends the message using an output pipe; on the
opposite end, a peer receives a message from an input pipe and extracts the
transmitted data.

19

20

Chapter 2 P2P Concepts

Notice that a pipe provides communication in only one direction, thus
requiring two pipes to achieve two-way communication between two peers.
The definition of a pipe is structured this way to capture the lowest common
denominator possible in network communications, to avoid excluding any
possible network transports. Although bidirectional communication is the
norm in modern networks, there’s no reason to exclude the possibility of a
unidirectional communications channel in the definition because any bidirec-
tional network transport can easily be modeled using two unidirectional pipes.

Services

Services provide functionality that peers can engage to perform “useful work”
on a remote peer. This work might include transferring a file, providing status
information, performing a calculation, or basically doing anything that you
might want a peer in a P2P network to be capable of doing. Services are the
motivation for gathering devices into a P2P network; without services, you
don’t a have a P2P network—you have just a set of devices incapable of lever-
aging each other’s resources.

Services can be divided into two categories:

» Peer services—Functionality offered by a particular peer on the net-
work to other peers. The capabilities of this service will be unique to
the peer and will be available only when the peer is connected to the
network. When the peer disconnects from the network, the service is
no longer available.

» Peer group services—Functionality offered by a peer group to mem-
bers of the peer group. This functionality could be provided by several
members of the peer group, thereby providing redundant access to the
service. As long as one member of the peer group is connected to the
network and is providing the service, the service is available to the peer

group.
Most of the functionality required to create and maintain a P2P network, such
as the underlying protocols required to find peers and resources, could also be

considered services. These core services provide the basic P2P foundation used to
build other, more complex services.

Advertisements

Until now, P2P applications have used an informal form of advertisements.
In Gnutella, the results returned by a search query could be considered an

Elements of P2P Networks

advertisement that specifies the location of a specific song file on the Gnutella
network. These primitive advertisements are extremely limited in their purpose
and application. At its core, an advertisement is defined as follows:

A structured representation of an entity, service, or resource made
available by a peer or peer group as a part of a P2P network.

All the building blocks discussed up to this point in the chapter can be
described by advertisements, including peers, peer groups, pipes, endpoints, ser-
vices, and content. When you start looking at advertisements in JXTA, you’ll
see the power of describing resources as advertisements and learn how adver-
tisements simplify the task of organizing P2P networks.

Protocols

Every data exchange relies on a protocol to dictate what data gets sent and in
what order it gets sent. Even the simplest human gesture, the handshake, is
built on a protocol that defines when it’s appropriate to shake hands, which
hand to use, and how long to shake. A protocol is simply this:

A way of structuring the exchange of information between two or more
parties using rules that have previously been agreed upon by all parties.
In P2P, protocols are needed to define every type of interaction that a peer can
perform as part of the P2P network:
= Finding peers on the network
= Finding what services a peer provides
= Obtaining status information from a peer
» Invoking a service on a peer
= Creating, joining, and leaving peer groups
= Creating data connections to peers
= Routing messages for other peers
The organization of information into advertisements simplifies the protocols
required to make P2P work. The advertisements themselves dictate the struc-
ture and representation of the data, simplifying the definition of a protocol.
Rather than passing back and forth raw data, protocols simply organize the

exchange of advertisements containing the required information to perform
some arbitrary functionality.

21

22 Chapter 2 P2P Concepts

Entity Naming
Most items on a P2P network need some piece of information that uniquely
identifies them on the network:

= Peers—A peer needs an identifier that other peers can use to locate
or specify it on the network. Identifying a particular peer could be
necessary to allow a message to be routed through a third party to the
correct peer.

» Peer groups—A peer needs some way to identify which peer group it
would like to use to perform some action. Actions could include joining,
querying, or leaving a peer group.

» Pipes—To permit communication, a peer needs some way of identifying
a pipe that connects endpoints on the network.

» Contents—A piece of content needs to be uniquely identifiable to
enable peers to mirror content across the network, thereby providing
redundant access. Peers can then use this unique identifier to find the
content on any peer.

In traditional P2P networks, some of these identifiers might have used net-
work transport-specific details; for example, a peer could be identified by its IP
address. However, using system-dependent representations is inflexible and
can’t provide a system of identification that is independent of the operating
system or network transport. In the ideal P2P network, any device should be
capable of participating, regardless of its operating system or network transport.
A system-independent entity naming scheme is a requirement for a flexible
P2P network.

P2P Communication

The fundamental problem in P2P is how to enable the exchange of services
between networked devices. Solving this problem requires first finding answers
to two important questions:

» How does a device find peers and services on a P2P network?

» How does a device in a private network participate in P2P?

The first question is important because, without the knowledge of the exis-
tence of a peer or a service on the network, there’s no possibility for a device
to engage that service. The second question is important to answer because
many devices in a P2P network will be separated from the network at large
by networking equipment designed to prevent or restrict direct connections
between two devices in difterent internal private networks.

P2P Communication

Finding Advertisements

Any of the basic building blocks discussed in the last section can be repre-
sented as an advertisement, and that characteristic considerably simplifies the
problem of finding peers, peer groups, services, pipes, and endpoints. Instead of
worrying about the specific case, such as finding a peer, you need to consider
only the general problem of finding advertisements on the network.

A peer can discover an advertisement in three ways:

= No discovery
= Direct discovery

= Indirect discovery

The first technique involves no network connectivity and can be considered
a passive discovery technique. The other two techniques involve connecting
to the network to perform discovery and are considered active discovery
techniques.

No Discovery

The easiest way for a peer to discover advertisements is to eliminate the
process of discovery entirely. Instead of actively searching for advertisements
on the network, a peer can rely on a cache of previously discovered advertise-
ments to provide information on peer resources, as shown in Figure 2.1.
Although this method might sound trivial, it can eftectively reduce the
amount of network traffic generated by the peer and allow a peer to obtain
nearly instantaneous results, unlike active discovery methods.

3. Peer 1 uses the advertisements
returned by the cache to engage
services from peers 2, 3, 4, and 5.

1. Peer goes to cache to
find pre-existing information
on available peers.

» Peer1

2. Cache returns
information on previously
discovered peers.

Peer 2 Peer 3 Peer 4 Peer 5

Cached advertisements
describing peers 2, 3, 4, and 5.

Peer 5 Peer 4

Figure 2.1 Peer discovery using cached advertisements.

23

24

Chapter 2 P2P Concepts

In its simplest form, the local cache might consist only of a text file that lists
the IP addresses and ports of previously discovered rendezvous peers, thereby
providing a starting point for active peer discovery. At the other extreme, a
cache might be as comprehensive as a database of every advertisement discov-
ered by the peer in the past. The cache of advertisements might even be
hard-coded into the P2P application itself, although this would limit the
flexibility of the application somewhat.

A drawback of using a cache of known advertisements is the potential for
advertisements in the cache to grow stale and describe resources that are no
longer available on the network. This presents a problem when a peer attempts
to engage a resource described by a stale advertisement and fails to engage the
service. Although the cache has the potential to reduce network traffic, in this
case, stale advertisements in the cache increase network traffic. When a peer
attempts to engage a resource over the network and discovers that the resource
is no longer available, the peer will probably have to resort to an active discov-
ery method. Thus, the peer engages the network twice in this case instead of
once, which would have been the case if it had used only active discovery.

To reduce the possibility that a given advertisement is stale, a cache can
expire advertisements, thereby removing them from the cache based on the
probability that a given advertisement is still valid.

One way to expire advertisements is to store a best before timestamp in
the cache with each advertisement. When an advertisement is discovered, a
timestamp 1s stored in the cache, setting the maximum lifespan of the adver-
tisement. Before using an advertisement, the cache checks the advertisement’s
best before timestamp and discards the advertisement if it’s no longer consid-
ered valid. Instead of waiting for an advertisement to be used, the cache might
also periodically cull the store of expired advertisements to reduce storage
requirements and improve responsiveness.

Another expiration technique that a cache might use is a first-in, first-out
stack of advertisements with a fixed maximum size for the stack. When the
cache is full, adding a new advertisement to the stack pushes out the oldest
advertisement first.

Using a cache to discover advertisements is simple to implement, especially
when built in conjunction with active discovery methods. In most modern
programming languages, it’s trivial to create code that processes an advertise-
ment from an abstract source and to create wrappers for file and network
sources. When done this way, the code is independent of the source and will
operate the same regardless of whether the advertisement originated from a
file cache or from another peer on the network.

P2P Communication

Direct Discovery

Peers that exist on the same LAN might be capable of discovering each other
directly without relying on an intermediate rendezvous peer to aid the discov-
ery process. Direct discovery requires peers to use the broadcast or multicasting
capabilities of their native network transport, as shown in Figure 2.2.

1. Peer 1 sends a broadcast to
all peers on the local network.

Peer 3

2. All peers receive the broadcast,
and reply to Peer 1, thereby
providing Peer 1 information on the
peers’ location on the network.

Ee=
Peer 5 Peer 4

Figure 2.2 Direct peer discovery.

When other peers have been discovered using this mechanism, the peer can
discover other advertisements by communicating directly with the peers, with-
out using broadcast or multicast capabilities.

Unfortunately, this discovery technique is limited to peers located on the
same local LAN segment and usually can’t be used to discover peers outside
the local network. Discovering peers and advertisements outside the private
network requires indirect discovery conducted via a rendezvous peer.

Indirect Discovery

Indirect discovery requires using a rendezvous peer to act as a source of
known peers and advertisements, and to perform discovery on a peer’s behalf.
This technique can be used by peers on a local LAN to find other peers with-
out using broadcast or multicast capabilities, or by peers in a private internal
network to find peers outside the internal network.

25

26 Chapter 2 P2P Concepts

Rendezvous peers provide peers with two possible ways of locating peers
and other advertisements:

» Propagation—A rendezvous peer passes the discovery request to other
peers on the network that it knows about, including other rendezvous
peers that also propagate the request to other peers.

» Cached advertisements—In the same manner that simple peers can
use cached advertisements to reduce network traffic, a rendezvous
can use cached advertisements to respond to a peer’s discovery queries.

When used together as shown in Figure 2.3, propagation and caching provide
an effective solution for rendezvous peers to cache a large number of
advertisements and serve a large number of simple peers. As each simple or
rendezvous peer responds to the discovery request, the rendezvous peer can
cache the response for future use, further reducing network traftic and
increasing network performance.

Rendezvous Peer 2 Peer 4
2. Rendezvous 1 forwards %

another discovery on to
another known
rendezvous peer,
Rendezvous Peer 2 3. Rendezvous Peer 2
replies with information
about Peers 3, 4, and 5.

Peer 1 Rendezvous Peer 1
1. Peer sends discovery query.

0 =

Firewall

Peer 5

4. Rendezvous Peer 1 replies with
results from Rendezvous Peer 2,
plus information it has on Peer 2.

Figure 2.3 Indirect discovery via a rendezvous peer.

Although caching reduces network traffic required to discover resources, prop-
agating discovery queries to other rendezvous peers without restriction can
lead to severe network congestion on a P2P network, as shown in Figure 2.4.
When one rendezvous receives a discovery query, it forwards the request to

all the rendezvous peers that it knows; one query comes in, and many queries
go out.

P2P Communication

2. Rendezvous forwarded
query from Rendezvous

Peer 1and forwards on to
rendezvous peers 3, 4, 5,
and 6.

loopback

Rendezvous Peer 1 Rendezvous Peer 3 Rendezvous Peer 6
1. Receives initial query 3. Receives forwarded
from Peer 1 and query from Rendezvous
forwards on to Peer 2 and forwards to
rendezvous peers 2 Rendezvous Peer 1,
and 3. forming a loopback.

Figure 2.4 Discovery propagation chaos.

This retransmission amplifies the discovery query. When the query is propa-
gated to other rendezvous peers, it is amplified again, dramatically increasing
the load on the network. Adding to the problem of unchecked propagation, a
discovery query’s path could double back on itself, creating a feedback loop or
loopback in the network.

To prevent excessive propagation of requests, messages usually incorporate a
Time To Live (TTL) attribute. TTL is expressed as the maximum number of
times a query should be propagated between peers on the network. As shown
in Figure 2.5, when a rendezvous peer receives a message containing a discov-
ery query, it decrements the message’s TTL by 1 and discards the query if the
resulting TTL value 1s 0. Otherwise, the query message is propagated to other
peers using the new TTL value.

As a result, each message has a maximum radius on the network that it can
travel. Of course, for this technique to work, all rendezvous peers must prop-
erly decrement the TTL field.

To address the problem of loopback, propagated messages can include path
information along with the request. Rendezvous peers along the way can use
this path information to prevent propagating a message to a rendezvous that
has already received the message. Although this technique eliminates loopback,
it doesn’t prevent a rendezvous peer from getting the same message multiple
times through indirect paths.

27

28 Chapter 2 P2P Concepts

3. Receives discovery query. 4. Receives discovery query,
decrements TTL to 0, does not
forward query on to other
rendezvous peers

1. Sends discovery query,
setting its TTL to 3

2. Receives discovery query,
decrements TTL to 2,
forwards on to rendezvous
peers 2 and 3

decrements TTL to 1,
forwards on to rendezvous
peers 4,5, 6, and 7

Rendezvous Peer 4

O

Rendezvous Peer 5

Rendezvous Peer 6

ila

Rendezvous Peer 2

Rendezvoys Peer 1

Peer 1

Rendezvous Peer 3

Rendezvous Peer 7

Figure 2.5 Ilustration of TTL in discovery propagation.

Discovering Rendezvous and Routing Peers

For most peers existing on a private internal network, finding rendezvous and
router peers is critical to participating in the P2P network. Because of the
restrictions of a private network’s firewall, a peer on an internal network has
no capability to use direct discovery to perform discovery outside the internal
network. However, a peer might still be capable of performing indirect discov-
ery using rendezvous and router peers on the internal network.

In most P2P applications, the easiest way to ensure that a simple peer can
find rendezvous and router peers is to seed the peer with a hard-coded set of
rendezvous and router peers. These rendezvous and router peers usually exist at
static, resolvable IP addresses and are used by a peer as an entrance point to the
P2P network. A peer located behind a firewall can use these static rendezvous
peers as a starting point for discovering other peers and services and can con-
nect to other peers using the static set of router peers to traverse firewalls.

P2P Communication

Challenges to Direct Communication

The use of firewalls and NAT by corporate private networks poses a serious
obstacle to P2P networking. NAT and firewalls are usually used together to
secure a corporate network against unauthorized network activity originating
from either inside or outside the network and to provide a private internal
networking environment.

Firewalls

Firewalls are used to protect corporate networks from unauthorized network
connections, either incoming from the outside network or outgoing from the
internal network, as shown in Figure 2.6. Typically firewalls use IP filtering to
regulate which protocols may be used to connect from outside the firewall to
the internal network or vice versa. A firewall might also regulate the ports used
by outside clients to initiate inbound connections to the internal network or
by internal clients to initiate outbound connections from the internal network.

Internal Private Network Outside Network (such as the Internet)

Firewall allows only
connections using specific
protocols and specific port
numbers to be made to the
internal network.
Connections attempted
using unauthorized
protocols or ports are
denied entry to the internal

'
'
'
h
]
'
'
'
'
'
:
'

Incoming Connections '
'
'
'
:
'
' network
'

'
.
]

Firewall Computer
)

)
Firewall allows only '
connections using specific i
protocols and specific port |
numbers to be made to the '
outside network. '
Connections attempted '
using unauthorized !
protocols or ports are not .
allowed to exit the internal '
network. '
'
'
'
'
'
'

Figure 2.6 A network topology using a firewall.

29

30

Chapter 2 P2P Concepts

Because a firewall might block incoming connections, a peer outside the fire-
wall will most likely not be capable of connecting directly to a peer inside the
firewall. A peer within the network might also be restricted to using only cer-
tain protocols (such as HTTP) to connect to locations outside the firewall,
further limiting the types of P2P communication possible.

Network Address Translation (NAT)

NAT is a technique used to map a set of private IP addresses within an inter-
nal network to another set of external IP addresses on a public network. NAT
comes in two varieties:

= Static NAT—In static NAT, the mapping relationship between internal
and external IP addresses is one-to-one. Every internal IP address is
mapped to one and only one external IP address.

» Dynamic NAT—Dynamic NAT maps the set of internal IP addresses
to a smaller set of external IP addresses.

A private network employing NAT usually assigns internal IP addresses from
one of the ranges of IP addresses defined specifically for private networks:

= Class A private addresses: 10.0.0.0 through 10.255.255.255
= Class B private addresses: 172.16.0.0 through 172.31.255.255
= Class C private addresses: 192.168.0.0 through 192.168.255.255

A machine using an [P address within this range is most likely behind NAT
equipment.

NAT is used for a variety of reasons, the most popular reason being that it
eliminates the need for global unique IP addresses for every workstation
within a corporation, thereby reducing the cost of a corporate network. NAT
also enables system administrators to protect a network by providing only a
single point of entry into the internal network. NAT accomplishes this by
allowing only incoming connections to internal machines that originally initi-
ated a connection to the outside network. Rather than attempting to protect
each machine using a firewall to filter incoming connections, a system admin-
istrator can use NAT to ensure that the only connections allowed back into
the network are those that originated within the network.

NAT is usually implemented by a router or a firewall acting as a gateway to
the Internet for the private internal network. To map a packet from an internal
IP address to an external IP address, the router does the following:

P2P Communication

1. Stores the source IP address and port number of the packet in the

router’s translation table

2. Replaces the source IP address for the packet with one of the IP
addresses from the router’s pool of public IP addresses, storing the map-
ping of the original IP address to the public IP address in the translation

table in the process

3. Replaces the source port number with a new port number that it assigns

and stores the mapping in the translation table

After each step has been performed, the packet is forwarded to the external

network. Data packets arriving at one

of the router’s external public IP

addresses go through an inverse mapping process that uses the router’ transla-
tion table to map the external port number and IP address to an internal IP
address and port number. If no matching entry for a given public IP address
and port number is found in the translation table, the router blocks the data
from entering the internal private network. The flow of data across a NAT

router is illustrated in Figure 2.7.

Internal Private Network

Outside Network (such as the Internet)

Only connections initiated
by an internal client are
permitted. Connections
initiated outside the internal
network are denied entry to
the internal network.

1. Internal machine initiates
connection to outside network via
NAT router.

4. The router checks to see if a
mapping between the external
IP address and a internal
address exists. If so, the
router rewrites the headers to
use the internal IP address
and lets the connection pass
into the internal network.

Figure 2.7 A network topology

2. The NAT router rewrites the
headers so that the connection
appears to come from one of the

router stores the mapping from the

]
'

'

'

'

1 router’s public IP addresses. The
'

| internal to the public IP address.
'

'
'

! 3. An external client responds
1 to a connection using the
'

\ public IP address.

using Network Address Translation.

31

32

Chapter 2 P2P Concepts

NAT protects networks by allowing only connections to the internal network
that originated within the internal network. A machine outside the network
can’t connect to a machine in the internal network unless the internal
machine initiated the connection to the external machine. As a result, an
external peer in a P2P network has no mechanism to spontaneously connect
to a peer located behind a NAT gateway. From the outside peer’s point of
view, the peer doesn’t exist because no mapping between external and internal
I[P addresses and port numbers exists in the router’s translation table.

Traversing the NAT/Firewall Boundary

The combined use of NAT and firewalls results in an especially difficult set
of circumstances for peer communication: Peers can’t connect to machines
behind NAT unless the internal peer initiates communication, and connec-
tions can be blocked at the firewall based on the connection’s protocol or
destination IP address and port number.

The only tool that a peer has at its disposal to solve this problem is its
capability to create outgoing network connections to hosts outside the fire-
wall/NAT gateway. Peers can use protocols permitted by the firewall to tunnel
connections through the firewall to the outside network. By initiating the
connection within the internal network, the necessary mapping in the NAT
router translation tables is set up, allowing an external machine to send data
back into the internal network. However, if a firewall is configured to deny
all outgoing connections, peer communication is impossible.

In most corporate networks, HTTP is the protocol most likely to be
enabled by a firewall for outgoing connections. Unfortunately, HTTP is a
request-response protocol: Each HTTP connection sends a request and then
expects a response. The connection must remain open after the initial request
to receive the response. Although HTTP provides a peer with a mechanism
to send requests out of the internal network, it doesn’t provide the capability
for external peers to spontaneously cross the firewall boundary to connect to
peers inside the internal network.

To address this problem, a peer inside a firewall uses a router peer either
located outside the firewall or visible outside the firewall to traverse the
firewall, as shown in Figure 2.8. Peers attempting to contact a peer behind
a firewall connect to the router peer, and the peer behind the firewall periodi-
cally connects to a router peer. When the internal peer connects to the router,
any incoming messages get pushed down to the peer in the HTTP response.

P2P Communication

Internal Private Network Outside Network (such as the Internet)

2. Peer 1 periodically
connects to Router Peer 1
to give the router a chance
to forward messages to it
from other peers.

Peer 1 Firewall/NAT Router Peer 1
D L L D O
. 3. Router Peer 1 uses the 1. Peer 2 sends a message
connection from Peer 1 to to Router Peer 1 to forward
push the message from to Peer 1 on its behalf.

Peer 2 into the internal
network.

Figure 2.8 Traversing a firewall/NAT.

This technique can be used with any protocol permitted by the firewall and
understood by the router peer. The router peer effectively translates between
the network transport used for P2P communication and the transport used to
tunnel through the firewall.

Routing Messages Between Peers

In cases when a firewall or NAT is located between two peers, a router peer
must be used to proxy a connection between the public network and the peer
located inside the firewall. In the simple case, only a single firewall separates
the source and destination peers, thus requiring only a single router peer. In
more complex cases, a firewall or NAT can protect each of the peers and
require the use of multiple router peers to traverse each firewall/NAT
boundary.

Single Firewall/NAT Traversal

Figure 2.9 shows the process for sending messages outside a single
firewall/NAT.

33

34 Chapter 2 P2P Concepts

Internal Private Network Outside Network (such as the Internet)

1. Peer 1 sends a
message to Router Peer 1
to forward to Peer 2 on its
behalf.

2. Router Peer 1 forwards
the message from Peer 1
on to Peer 2.

4. Peer 1 periodically
connects to Router Peer '
1 to check for new ' message to Router Peer 1
'
'

3. Peer 2 sends a

messages. to forward to Peer 1 on its
*** > behalf.

5. Router Peer 1 pushes

the message from Peer 2
to Peer 1.

Figure 2.9 Outgoing single firewall/NAT traversal.

To allow a peer located inside a firewall/INAT to send a message to another
peer located on the public network, three steps are required:

1. The peer behind the firewall/NAT connects to the router peer using a
protocol capable of traversing the firewall, such as HTTP, and requests
that the router peer forward a message to a destination peer.

2. The router accepts the connection from the peer behind the firewall and
initiates a connection to the requested destination on the peer’s behalf.
This connection uses whatever network transport both the router peer
and the destination peer have in common.

3. The message is sent from the source to the destination peer by the router
peer, acting as a proxy for the source peer.

After the message from the source peer has been sent to the destination peer,
the connection closes. Further messages can be sent by repeating the proce-
dure, but the message might use a difterent router peer and, therefore, might
follow a difterent route to the destination peer.

To allow a public peer to send a message to a peer located behind a fire-
wall/NAT, the source peer must know routing information that describes a
router peer capable of routing the message to the destination peer. Route
information might have been obtained previously during discovery or might

P2P Communication

require an additional discovery request to the P2P network. When the source
peer has obtained routing information, sending the message involves three
steps:

1. The source peer opens a connection to the router peer, asking it to for-
ward the message on to the destination peer.

2. The router peer waits until the destination peer connects to it using a
protocol capable of traversing the firewall, such as HTTP.

3. The destination peer connects to the router peer periodically, at which
point the message is pushed down to the destination peer.

Again, when the message reaches the destination peer, the connection between
the router peer and the other two peers is closed. Sending another message
from the source peer requires repeating the procedure and might use a differ-
ent router peer to provide connectivity to the destination peer.

Double Firewall/NAT Traversal

Most simple peers located at the edge of the Internet are likely to be protected
by a firewall/NAT, so any message being sent from a source peer to a destina-
tion peer will need to traverse two firewall/NAT boundaries. The procedure
for traversing two firewalls is similar to the single firewall traversal case and
basically combines both the incoming and the outgoing cases of the single
firewall traversal scenario. Figure 2.10 illustrates a double firewall/NAT
traversal.

Internal Private Network 2

Internal Private Network Outside Network (such as the Internet)

1. Peer 1 sends a message
to Router Peer 1 to forward

.
'
I
I
'
I
I
'
'
'
to Peer 2 on its behalf via i

1 3. Peer 2 connects to

forwards the message
on to router Peer 2.

in previously obtained
routing information.

, togive it a chance to
! forward messages.

.
'
i
i
'
i
i
'
i
i
:
i
router Peer 2, as specified 1 2. Router Peer 1 | Router Peer 2 periodically
'
'
i
i
N

Router Peer 1 Router Peer 2 b Peer 2

Firewall 1 Firewall 2
T pupupupuppRRR B bt e, >

4. Router Peer 2 uses the |
connection from Peer2to |
traverse the firewall and !
deliver messages on behalf .
of Peer 1. '

I

I

'

I

I

!

Peer 1

Figure 2.10 Double firewall traversal.

35

36

Chapter 2 P2P Concepts

Before a source peer can send the message, it needs to locate routing informa-
tion for the peer that describes a set of router peers capable of proxying
messages to the destination peer. In this case, more than one router peer might
be involved; one router peer is required to allow the source peer to traverse its
firewall, and another is required to traverse the firewall providing access to the
destination peer. When the source peer has this routing information, sending
the message involves four steps:

1. The source peer opens a connection to the source router peer, asking it
to forward the message on to the destination peer by way of the destina-
tion router peer provided.

2. The source router peer opens a connection to the destination router
peer. This connection uses whatever network transport both router peers
have in common.

3. The destination router peer waits until the destination peer connects to
it using a protocol capable of traversing the firewall, such as HTTP.

4. The destination peer connects to the router peer periodically, and the
message is pushed down to the destination peer.

Traversing both firewalls might involve only one router peer if both the source
and the destination peers have a router peer in common; however, traversing
firewall boundaries isn’t the only reason to use a router peer. Multiple router
peers can be used by a peer to circumnavigate network bottlenecks and
achieve greater performance, or to provide translation between two incompati-
ble networks transports. When the peer connects to the source router peer in
this case, it provides an ordered list of router peers to use to send the message
to the peer on its behalf.

Comparisons to Existing P2P Solutions

Using the building blocks of P2P networks defined in this chapter, it’s possible
to interpret existing proprietary P2P solutions, such as Napster and Gnutella,
or even non-P2P applications, such as the client/server architecture.

Napster

Napster’s hybrid P2P network, consisting of a centralized server for perform-
ing search functionality, could be modeled as a single rendezvous peer and
multiple simple peers, all using TCP as a network transport. The rendezvous
peer provides simple peers with the capability to locate an MP3 file advertise-
ment consisting of filename, IP address, and port information. Simple peers use
this information to connect directly and download the file from its host peer.

Summary

Napster doesn’t provide a complete solution for bypassing firewalls, and it is
capable of traversing only a single firewall. Each peer acts as a simple router,
capable of sending content to a firewalled peer when a request is made via
HTTP. Napster provides no message-routing capabilities, meaning that simple
peers on the network can’t act as router peers to enable other peers to
perform double firewall traversal.

Gnutella

In the Gnutella network, each peer acts as a simple peer, a rendezvous peer,
and a router peer, using TCP for message transport and HTTP for file transfer.
Searches on the network are propagated by a peer to all its known peer
neighbors, which then propagate the query to other peers. Advertisements for
content on the Gnutella network consist of an IP address, a port number, an
index number identifying the file on the host peer, and file details such as
name and size. Gnutella peers don’t provide full router peer capabilities, which
means that, as with Napster, Gnutella peers are capable of traversing only a
single firewall.

Client/Server

Even traditional client/server architecture can be interpreted in terms of the
P2P building blocks. The client acts as a simple peer, and the server acts as a
rendezvous peer capable of providing advertisements that vary according to the
application. No capabilities for traversing firewalls or NAT are provided, and
the network transport used varies by application.

The definitions of these basic P2P building blocks will be expanded in the
coming chapters to incorporate the implementation-specific details defined by
JXTA and the Java reference implementation of JXTA.

Summary

This chapter presented the basic building blocks of P2P networking and
explained some of the obstacles that a P2P network must overcome.
Specifically, this chapter explained the barrier to P2P communication pre-
sented by firewall/NAT routers, provided background information on how
they work, and explained how P2P manages to provide connectivity to private
networks protected by firewall/NAT routers.

The next chapter builds on this chapter and reveals the JXTA realization of
the building blocks defined in this chapter. Using the JXTA Shell, you’ll see
how to experiment with these primitives directly, to better understand them
before you explore the JXTA protocols.

37

Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introducing JXTA P2P Solutions

NOW THAT YOU'VE GOTTEN A BASIC introduction to the terminology, compo-
nents, and issues of P2P networking, it’s time to begin exploring the JXTA
platform. This chapter introduces the logical structure and building blocks of
JXTA, and demonstrates the capabilities of JXTA using the JXTA Shell appli-
cation to provide interactive experimentation with the JXTA platform.

As outlined in Chapter 2, “P2P Concepts,” a complete P2P solution
provides mechanisms for a peer to do the following:

» Discover other peers and their services

» Publish its available services

» Exchange data with another peer

» Route messages to other peers

» Query peers for status information

= Group peers into peer groups

The JXTA platform defines a set of protocols designed to address the common
functionality required to allow peers on a network to form robust pervasive
networks, independent of the operating system, development language, and
network transport employed by each peer.

40

Chapter 3 Introducing JXTA P2P Solutions

Core JXTA Design Principles

While designing the protocol suite, the Project JXTA team made a conscious
decision to design JXTA in a manner that would address the needs of the
widest possible set of P2P applications. The design team stripped the protocols
of any application-specific assumptions, focusing on the core P2P functionality
that forms the foundation of all types of P2P applications.

One of the most important design choices was not to make assumptions
about the type of operating system or development language employed by a
peer. By making this choice, the Project JXTA team hoped to enable the
largest number of potential participants in any JXTA-enabled P2P networking
application. The JXTA Protocols Specification expressly states that network
peers should be assumed to be any type of device, from the smallest embedded
device to the largest supercomputer cluster.

In addition to eliminating barriers to participation based on operating sys-
tem, computing platform, or programming language, JXTA makes no assump-
tions about the network transport mechanism, except for a requirement that
JXTA must not require broadcast or multicast transport capabilities. JXTA
assumes that peers and their resources might appear and disappear sponta-
neously from the network and that a peer’s network location might change
spontaneously or be masked by Network Address Translation (NAT) or firewall
equipment.

Apart from the requirements specified by the JXTA Protocols Specification,
the specification makes several important recommendations. In particular, the
specification recommends that peers cache information to reduce network
traffic and provide message routing to peers that are not directly connected to
the network.

The JXTA Protocol Suite

Based on these design criteria and others documented in the Protocols
Specification, the Project JXTA team designed a set of six protocols based on
XML messages, shown in Figure 3.1.

Each of the JXTA protocols addresses exactly one fundamental aspect of
P2P networking. Each protocol conversation is divided into a portion con-
ducted by the local peer and another portion conducted by the remote peer.
The local peer’s half of the protocol is responsible for generating messages and
sending them to the remote peer. The remote peer’s half of the protocol is
responsible for handling the incoming message and processing the message to
perform a task.

Local Peer

Core JXTA Design Principles

Remote Peer

Peer Discovery Protocol !

Peer Discovery Protocol

Peer Information Protocol 1

Peer Information Protocol

Pipe Binding Protocol

Pipe Binding Protocol

i 8

Via the Endpoint Routing Protocol

Via Installed Network Transports

Peer Resolver Protocol

Rendezvous Protocol

Via Installed Network Transports
S ettt aiedeed a0

Network Transport

Network Transport

Figure 3.1 The JXTA protocol stack.

Each protocol is semi-independent of the others. A peer can elect to imple-
ment only a subset of the protocols to provide functionality, while relying on
prespecified behavior to eliminate the need for a protocol. For example, a peer
could rely on a preconfigured set of router peers and, therefore, would not
require an implementation of the Endpoint Routing Protocol. However, the
protocols aren’t entirely independent of each other because each layer in the
JXTA protocol stack depends on the layer below to provide connectivity to
other peers. Although it would be possible to build an independent implemen-
tation of the Peer Discovery Protocol, it wouldn’t be useful without an imple-
mentation of the Peer Resolver and Endpoint Routing Protocols to handle

transporting its messages to remote peers.

41

42 Chapter 3 Introducing JXTA P2P Solutions

Peers can even elect to implement only one half of a protocol to provide a
peer optimized for one specific task. However, despite the allowance for partial
implementations, the JXTA specification recommends that peers completely
implement all the protocols.

The Logical Layers of JXTA
The JXTA platform can be broken into three layers, as shown in Figure 3.2.

JXTA Applications

JXTA Community Applications Sun JXTA Applications
JXTA Shell —
JXTA Services JXTA Community Services Sun JXTA Services
Peer Commands|

‘ Peer Groups ‘ ‘ Peer Pipes ‘ ‘ Peer Monitoring ‘

JXTA Core

‘ Security ‘

The P2P Network

Figure 3.2 The JXTA three-layer architecture.

Each layer builds on the capabilities of the layer below, adding functionality
and behavioral complexity.

The Core Layer

The core layer provides the elements that are absolutely essential to every P2P
solution. Ideally, the elements of this layer are shared by all P2P solutions.
These concepts were discussed in Chapter 2. The elements of the core layer
are listed here:

= Peers
= Peer groups
» Network transport (pipes, endpoints, messages)

= Advertisements

Core JXTA Design Principles

= Entity naming (identifiers)
= Protocols (discovery, communication, monitoring)

= Security and authentication primitives

The core layer includes the six main protocols provided by JXTA. Although
these protocols are implemented as services, they are located in the platform
layer and are designated as core services to distinguish them from the service
solutions of the services layer.

The core layer, as its name suggests, is the fundamental core of the JXTA
solution. All other aspects of a JXTA P2P solution in the services or applica-
tions layers build on this layer to provide functionality.

The Services Layer

The services layer provides network services that are desirable but not neces-
sarily a part of every P2P solution. These services implement functionality
that might be incorporated into several different P2P applications, such as the
following:

= Searching for resources on a peer
= Sharing documents from a peer

= Performing peer authentication

The services layer encompasses additional functionality that is being built by
the JXTA community (open-source developers working with Project JXTA)
in addition to services built by the Project JXTA team. Services built on top
of the JXTA platform provide specific capabilities that are required by a
variety of P2P applications and can be combined to form a complete P2P
solution.

The Applications Layer

The applications layer builds on the capabilities of the services layer to provide
the common P2P applications that we know, such as instant messaging.
Because an application might encompass only a single service or aggregate
several services, it’s difficult sometimes to determine what constitutes an
application and what constitutes a service.

Usually, the presence of some form of user interface indicates an application
rather than a service. In the case of the JXTA Shell, most of the functionality
is built on peer commands, simple services that accept command-line argu-
ments from the JXTA Shell. The JXTA Shell itself is a service, providing only
a minimal user interface, so the Shell is spread across the application/service
boundary.

43

44

Chapter 3

Introducing JXTA P2P Solutions

Applications include those P2P applications being built by the JXTA
Community, as well as demonstration applications such as the JXTA Shell
being built by the Project JXTA team.

XML: A Brief Introduction

All aspects of JXTA build on the eXtensible Markup Language (XML) to
structure data as advertisements, messages, and protocols. XML is good choice
for representing data for five reasons:

XML is language-neutral. Any programming language capable of
manipulating text strings is capable of parsing and formatting XML data.

XML is simple. XML uses text markup to structure data in much the
same way that HTML structures text documents for display in web
browsers. The simplicity of XML makes it easier for developers to under-
stand and debug.

XML is self-describing. An XML document consists of data struc-
tured using metadata tags and attributes that describe the format of the
data. Although XML supports the use of Document Type Definitions
(DTDs) to provide a schema definition of a valid document, this is not a
requirement for a well-formed XML document.

XML is extensible. Unlike HTML, XML allows authors to define
their own set of markup tags to structure data.

XML is a standard. The World Wide Web Consortium (www.w3.org) is
responsible for maintaining the XML standard, with industry and com-
munity input, and has been widely adopted in all areas of the computer
industry.

To learn all you’ll need to know about XML to understand JXTA, consider
the simple example given in Listing 3.1.

Listing 3.1 A Simple XML Example

<?xml version="1.0" encoding="UTF-8"?>
<Person>

<Name>Erwin van der Koogh</Name>
<Address>12 Lower Hatch Street</Address>
<City>Dublin</City>
<Country>Ireland</Country>
<Phone>555-5555</Phone>

</Person>

Core JXTA Design Principles

Even if you’ve never seen XML, you probably recognize the example XML
document as the contact information for a person named Erwin van der
Koogh. From the example, you might guess at some of the rules of XML as
follows:

= Each piece of information is encapsulated between a beginning and an
end tag (such as <Name></Name>).

» The name of a tag specifies the type of content contained by the tags.

= Tags can be nested to form hierarchies that further structure the data in a
meaningful way.

The only piece of information that might be puzzling is the first line. The first
line specifies that the document is formatted using the rules set out by the
XML 1.0 standard and that the document is encoded using UTF-8.

This example is straightforward. However, you might ask yourself, “What if
Erwin has more than one phone number?” To further structure the data, an
XML document can contain any number of the same type of element and can
augment the elements with attributes that distinguish the elements, as shown
in Listing 3.2.

Listing 3.2 An Expanded XML Example

<?xml version="1.0" encoding="UTF-8"?>
<Person>
<Name>Erwin van der Koogh</Name>
<Address>12 Lower Hatch Street</Address>
<City>Dublin</City>
<Country>Ireland</Country>
<Phone Type="Home">555-5555</Phone>
<Phone Type="Work">555-1234</Phone>
</Person>F

The addition of the Type attribute to the Phone element tells you that 555-5555
corresponds to Erwin’s home phone number and that 555-1234 corresponds to
his work phone number.

More formal XML documents might use DTDs to define the following:

» Which tags are valid for a document

» How many times a specific tag might occur
» The order of the tags

» Required and optional attributes

» Default attribute values

45

46

Chapter 3 Introducing JXTA P2P Solutions

When an XML document implements the rules specified by a DTD, the XML
document is said to be valid. When an XML document doesn’t use a DTD
but otherwise follows the rules of XML, it is said to be well formed. For sim-
ple applications of XML, it is usually enough that documents are well formed,
eliminating the overhead required to check that a document complies with a
DTD.

That, in a nutshell, is about all the XML you need to know or understand
to comprehend the XML used by JXTA. Although XML supports many other
wonderful capabilities, understanding these capabilities isn’t necessary to under-
stand JXTA’s use of XML. For more information on XML, see Appendix B,
“Online Resources,” for the location of the XML standard and other XML
resources.

JXTA Advantages and Disadvantages

JXTA provides a far more abstract language for peer communication than pre-
vious P2P protocols, enabling a wider variety of services, devices, and network
transports to be used in P2P networks. The employment of XML provides a
standards-based format for structured data that is well understood, well sup-
ported, and easily adapted to a variety of transports. XML also has the advan-
tage that it’s a human-readable format, making it easy for developers to debug
and comprehend. So far, JXTA seems to have done everything right. Well,
maybe not.

One important element that JXTA does not attempt to address is how ser-
vices (other than the core services) are invoked. Several standards exist for
defining service invocation, such as the Web Services Description Language
(WSDL), but none has been specifically chosen by the JXTA Protocols
Specification. JXTA provides a generic framework for exchanging information
between peers, so any mechanism, such as WSDL, could potentially be used
via JXTA to exchange the information required to invoke services.

Several other arguments arise against the flexibility that the designers of
JXTA infused throughout the JXTA Protocols Specification. Although JXTA’s
use of XML specifies all aspects of P2P communication for any generic P2P
application, JXTA might not be suited to a specific standalone P2P applica-
tion. In an individual application, the network overhead of XML messaging
might be more trouble than it’s worth, especially if the application developer
has no intention of taking advantage of JXTA’s capabilities to incorporate
other P2P services into the application.

Core JXTA Design Principles

Critics of JXTA point out that the platform’s abstraction of the network
transport is another potential area of excess. If most P2P applications today
rely on the Transport Control Protocol (TCP) to provide a network transport,
why does JXTA go to such lengths to avoid tying the protocols to a specific
network transport? Why not specify TCP as the assumed network transport
and eliminate the overhead?

All these points highlight the need for developers to balance flexibility with
performance when implementing their P2P applications. JXTA might not be
the best or most efficient solution for implementing a particular P2P applica-
tion. However, JXTA provides the most well-rounded platform for producing
P2P applications that have the flexibility required to grow in the future. The
capability to leverage other P2P services and enable widespread development
of P2P communities is the core value of the JXTA platform.

How Is JXTA Different from Jini or .NET?

The promise of interconnecting any type of device over any type of network
might sound familiar to followers of Sun’s Jini technology. Although there are
some similar goals, Jini relies exclusively on the Java platform for its function-
ality, whereas JXTA has no dependence on a particular programming language.
Unlike JXTA, Jini uses a centralized server to locate services on the network
and relies on Remote Method Invocation (RMI) and object serialization for
communication with remote devices. JXTA relies on XML rather than object
serialization to exchange structured data and discovers services across all peers
on the P2P network.

The Web Services aspects of Microsoft’s .NET platform are heavily infused
with XML, but the use of XML alone doesn’t make them comparable.
Fundamentally, JXTA and .NET have completely different purposes, with
.NET focusing more on the traditional client/server architecture of service
delivery. Although .NET technology could form the foundation of a P2P
application, creating a full P2P solution with .NET would require extra work
on the part of the developer. Developing a P2P solution using .NET would
require a developer to specify all the core P2P interactions, such as peer dis-
covery. This solution would essentially involve recreating all the mechanisms
that are already defined by the JXTA protocols.

47

48

Chapter 3 Introducing JXTA P2P Solutions

Introducing the JXTA Shell

Rather than try to explain JXTA in the abstract, what better way to start to
understand JXTA than seeing the technology in action? To do this, the
remainder of this chapter guides you through using the JXTA Shell.

The JXTA Shell is a demo application built on top of the JXTA platform
that allows users to experiment with the functionality made available through
the Java reference implementation of the JXTA protocols. The JXTA Shell
provides a UNIX-like command-line interface that allows the user to perform
P2P operations by manipulating peers, peer groups, and pipes using simple
commands.

Before You Install the JXTA Shell

To make the installation easier, you should already have a Java Run-Time
Environment (JRE), version 1.3 or later, on your computer. To test whether
you have a JRE already installed, go to the command prompt and type

java -version

If you have an existing JRE, you will see version information from the run-
time of this form:

java version "1.3.1_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_01)
Java HotSpot(TM) Client VM (build 1.3.1_01, mixed mode)

If you don'’t see this type of output, or if your version is lower that 1.3, you
need to install a version 1.3 or higher JRE.

You can download a version of the JXTA Shell installer for most platforms
with a standalone JRE included. However, if you intend to try the example
code in this book’s later chapters, you should install the Java 2 SDK (which
includes a JRE) instead of a standalone JRE.The Java 2 SDK for most
major platforms, including Solaris, Linux, and Windows, is available from
www . javasoft.com/j2se/.

For developers using the Mac platform, the latest Java environment can be
downloaded from www.apple.com/java/ but is available only for the Mac OS X
platform.

Obtaining and Installing the JXTA Shell

The JXTA Shell application can be obtained from either the Project JXTA
web site as a set of prebuilt binaries or from the Project JXTA source control
system as a set of source files.

Introducing the JXTA Shell 49

To avoid the extra work required to build the JXTA Shell from source
code, these experiments use the prebuilt JXTA Shell binaries that come with the
JXTA demo applications. To download the JXTA demo installer that includes
the JXTA Shell binaries, go to download.jxta.org/easyinstall/install.html.

Installing the JXTA demo applications also installs the latest stable build of
the JXTA platform, packaged as a set of Java Archive (JAR) files. Unless you’re
interested in working with the latest experimental (and potentially unstable)
version available from the Project JXTA CVS repository, these archives are all
that’s required to build new JXTA solutions in Java. The latest JXTA build at
the time of writing was build 47b, built on January 25, 2002.

The installation procedure is slightly different for each operating system.
The following sections describe the installation procedure for various operat-
ing systems.

Installing the JXTA Shell for Windows

To install the JXTA demo applications for the Windows platform, follow these
steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. If you already have a version 1.3 or later JRE installed on your machine,
download the Windows Without Java VM installer; otherwise, download
the Windows Includes Java VM installer.

3. When prompted by your web browser, specity a directory to store the
downloaded installer.

4. After the download is complete, open Windows Explorer and go to the
folder where you stored the downloaded installer.

5. Run the installer. It should be called either JXTAInst.exe or
JXTAInst_VM.exe, depending on whether you chose the installer that
includes the JVM.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (C:\Program Files\JXTA_Demo).
Click Install.

50

Chapter 3 Introducing JXTA P2P Solutions

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Solaris, Linux, and UNIX

To install the JXTA demo applications for the Windows platform, follow these
steps:
1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. It you already have a version 1.3 or later JRE installed on your machine,
download the Without Java VM installer for your platform; otherwise,
download the Includes Java VM installer for your platform. The UNIX
platform install does not have a version that includes a standalone JRE,
so if you don't already have a JRE, you must download and install one
first.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using sh ./JXTAInst.bin, replacing JXTAInst.bin with the
name of the file that you downloaded. It should be called JXTAInst.bin,
JXTAInst_Sol_VM.bin, or JXTAInst_LNX_VM.bin, depending on which version
you chose to download.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications

should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

Introducing the JXTA Shell 51

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Other Java-Supported Platforms

To install the JXTA demo applications for any other platform that supports
Java, you can download a Java-based installer. However, you must already have
a JRE installed on your machine. To install the JXTA demo applications for a
Java-enabled platforms, follow these steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. Download the Other Java-Enabled Platforms version of the JXTA Shell
installer.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using java -classpath JXTA Demo.zip install.
6. Click Next to dismiss the Introduction dialog box.

7. The installer display the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.
8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (usually
C:\Program Files\JXTA_Demo or ~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

The Installation Directory Structure

When the installation is complete, the directory structure that’s shown in
Figure 3.3 appears.

52

Chapter 3 Introducing JXTA P2P Solutions

(JXTA Install)

Instant P2P

lib

Shell

UninstallerData

Figure 3.3 The installation directory structure.

(UXTA Install) is the installation directory that you specified to the installer. The
1lib subdirectory contains the JARs for the JXTA platform and the demo
applications, and the Shell subdirectory contains the executable to start the
Shell application. After the Shell is executed, the Shell subdirectory also holds
a cache of configuration information and discovered peers and resources.

The InstantP2pP directory contains another demo application that you do
not use here. The UninstallerData directory contains the executable required to
uninstall the JXTA demo applications.

Running the JXTA Shell

To start the JXTA Shell, follow the instructions provided at the end of the
installation process.

On Windows, start the application by clicking Start, Programs, JXTA, JXTA
Shell.

On other platforms, execute the script provided by the installer to start the
application:

1. Open a command shell.

2. Go to the directory location that you specified for the JXTA Shell
during the installation.

3. Go to the shell subdirectory.

4. Execute the shell.exe or the shell.sh script.

Running the JXTA Shell 53

Alternatively, you can invoke the Shell application directly using this command
from the Shell subdirectory of the JXTA installation:

C:\Program Files\JXTA Demo\Shell>java -classpath ..\lib\jxta.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\jxtasecurity.jar;
..\lib\cryptix-asni.jar;..\lib\cryptix32.jar;..\1lib\minimalBC. jar;
..\lib\jxtaptls.jar net.jxta.impl.peergroup.Boot

On non-Windows platforms, you need to change the command given to
match the directory and environment variable separator characters used by
your platform. On Solaris, Linux, and UNIX, use / instead of \, and :
instead of ;.

Configuring the Shell

The first time you execute the application, you are presented with a screen
requesting configuration information, as shown in Figure 3.4.

[25 3xTA Configurator 1 =100 =]
See "http:ishell da. orgindes itml for config help

basicl advanced RendezvousrRelaysl Securilyl

Basic settings

Peer Mame || (Mandatory)

|_ Use a proxy server if behind firewall)

Prowy address ImyProxy.myDomain 2020

Ok | Cancell

Figure 3.4 The basic configuration screen.

54

Chapter 3

The user interface that appears, called the Configurator, is used by the refer-
ence implementation to configure the JXTA platform before starting the
JXTA platform. To configure the JXTA plattorm using the Configurator,

Introducing JXTA P2P Solutions

follow these steps:

1.

2.
3.
4

5.

After you click OK, the JXTA platform starts and connects to the network.
The time that it takes to start the JXTA platform varies with speed of your
network connection, but it should take less than 30 seconds, at the most.
Assuming that you have a simple network configuration, the Shell should

Enter a name for your peer in the Peer Name text field.
Go to the Security tab.

Enter a username in the Secure Username text field.

start up and display the screen that’s shown in Figure 3.5.

Enter a password in the Password text field, and enter the same password
in the Verify Password text field. Be sure to note the username and pass-
word that you enter because they will be required each time you start

the JXTA platform in the future.

Click OK.

=4 JXTA Shell - 1 [

= Welcome to the JXTAShell Version 1.0 ===

The JXTA Shell provides an interactive enviromment to the JETA

platform. The 3hell provides basic commands to discover peers and
peergroups, to join and resign from peergroups, to create pipes

between peers, and to send pipe messages. The Shell provides environment
wariahles that permit binding symbolic names to Jxta platform ohjects.
Environment wvariables allow Shell commands to exchange data between
themselwes. The shell command 'env' displays all defined enwironment
wvariahles in the current 5hell session.

The Shell creates a Jxta InputPipe (stdin) for reading input from
the keyboard, and a Jxta OucputPipe (stdout) to display information
on the Shell console. 411 commands executed by the 5hell hawe their

The Shell also creates the environment wariable 'stdgroup' that
contains the current J{TA PeerGroup in which the Shell and conmands
are executed.

4 new Shell can be forked within a Shell. The 'Shell -2'
comnand starts a new Shell with a new 3hell window. The Shell can
also read a command script £ile wia the 'Shell -f nyfile'.

4 'man' command is available to list the commands available.
Type 'man <command-' to get help about a particular command.
To exit the 5hell, use the 'exit' conmand.

JXTh

initial 'stdin' and 'stdout' set up to the 3hell's stdin and stdout pipes.

Figure 3.5 The JXTA Shell user interface.

Running the JXTA Shell

To confirm that your client is correctly connected to the network, enter the
rdvstatus command at the JXTA prompt:

JXTA>rdvstatus

If the Shell is correctly configured and managed to locate a rendezvous server,
the rdvstatus command returns a similar result to the one given in Listing 3.3.

Listing 3.3 Results of the rdvstatus Command

Rendezvous Connection Status:

Is Rendezvous : [false]

Rendezvous Connections :
Rendezvous name: JXTA.ORG 237
Rendezvous name: JXTA.ORG 235
Rendezvous name: ensd_1

Rendezvous Disconnections :

[None]

This output shows that the Shell has correctly connected to three rendezvous
peers, named JXTA.ORG 237, JXTA.ORG 235, and ensd_1. If you receive this response,
your Shell peer is correctly configured and connected to the network; if you
don’t receive this response, see the next section to troubleshoot your
configuration.

Troubleshooting Your Peer’s Configuration

Listing 3.4 shows the output of the rdvstatus command when the client has
failed to locate any rendezvous peers and cannot locate other peers.

Listing 3.4 No Visible Rendezvous Peers

Rendezvous Connection Status:

Is Rendezvous : [False]

Rendezvous Connections :

continues

55

56

Chapter 3 Introducing JXTA P2P Solutions

Listing 3.4 Continued

[None]

Rendezvous Disconnections :

[None]

In some cases, it might take a few moments to see the rendezvous peers due to
network latency. Wait a few moments before running rdvstatus again to see if
the problem is simply high network latency. If the rdvstatus still shows no ren-
dezvous peers, try using this command:

JXTA>peers -r
Wait a few moments and try the rdvstatus command again. If rdvstatus still
fails to show any rendezvous peers, several possible reasons exist:

» No rendezvous peers are available.

» Your firewall configuration is preventing you from communicating with
a rendezvous peer.

» You’re not connected to a network.
If you aren’t connected to a network, you can still use the Shell to experiment

with the JXTA platform by following the instructions in the later section,
“Using the JXTA Shell Without a Network Connection.”

Finding Available Rendezvous Peers
First, confirm that rendezvous peers are available on the network:

1. Force the Shell to display the configuration screen the next time you
start the Shell by typing the following from within the Shell:

JXTA>peerconfig

If you don't invoke this command before exiting the Shell, the Shell
simply uses cached configuration information the next time it starts,
with the same results. The peerconfig command will return this:

peerconfig: Please exit and restart the jxta shell to

2. Follow the instructions and exit the shell by using the following
command:

JXTA>exit

Running the JXTA Shell 57

3. Restart the Shell application the same way you started it the first time.
This time you are prompted to enter only the username and password
that you entered the first time in the Configurator. Enter the username
and password, and hit Enter.

4. When the configuration screen appears this time, go to the Rendezvous/
Relays tab and click Download Relay and Rendezvous Lists. The Load
list from URL dialog box appears. (See Figure 3.6.)

‘%JXTA Configurator " =181 =l
See "hitp:iishell jxta.orglfindex. html" for config help

basicl advanced Rendezvousrﬂelaysl Becurityl

Experienced Users Only
Fendezimns Sefiings

[Actas a Rendezvous

Available TCP rendez-vous Available HTTP rendez-vous
| | o | | -
:‘%Load list from URL 4 x|

Edit the urls below and click"Load". Blank those you do notwant to [oad. Repeat if needed.

See also: hitpeiplatform. jxta. argfjavalrendezvous himl

Tep rendez-vaus list I

Hittp rendez-vous list Ihtlp:rirdvjxtah0Sts.netfcgi-binIhﬂdevsProd.cgi

HTTF relays list |http:ﬁrdvjxtahosts.netfcgi-binIroutersProd.cgi

Load | Dismiss |
| |

Download relay and rendezvous lists

ok | Cancell

Figure 3.6 The Download Rendezvous/Router List dialog box.

To find rendezvous peers to use for peer discovery, the JXTA Shell attempts to
download a list of available rendezvous peer IP addresses. This is a convenient
mechanism for finding rendezvous peers, although you could just as easily
enter the IP address and port of a rendezvous peer manually in the
Rendezvous Settings section of Rendezvous/Router tab.

Using a web browser, go to the location shown in the Http rendez-vous list
text field—by default, this value is as follows:

http://rdv.jxtahosts.net/cgi-bin/httpRdvsProd.cgi

58

Chapter 3 Introducing JXTA P2P Solutions

This site returns a list of the production rendezvous peers run by Project
JXTA.These peers are running the latest stable release of the JXTA platform,
which should be the same as the platform version provided with the JXTA
demo application installer. If the page returned is empty, no known production
rendezvous peers are available from Project JXTA. Most likely, this 1s only a
temporary situation occurring during an update to the rendezvous peer soft-
ware. Try again later, or see the next section, “Using the JXTA Shell Without a
Network Connection” for further instructions.

If the URL returns a list of rendezvous peers, you should test to make sure
that at least one rendezvous peer in the list is operating at the specified IP
address and port. To do this, you can use a web browser to request an
acknowledgement from the rendezvous peer. For example, if the rendezvous
peer is located at IP address 63.81.220.34 and is listening on port 9700, point-
ing a web browser to http://63.81.220.34:9700/ping/ should return a blank web
page.You can view the source of the web page to confirm that the result is a
web page, not an error page.

If you have found a working rendezvous peer, the problem is mostly likely
due to the configuration of a firewall between your machine and the outside
network. Go to the Basic tab, check the Use a Proxy Server option, and enter
the location of a HTTP proxy on your local network.You can obtain the
location of your network’s HTTP proxy by copying the proxy settings from
your web browser or talking to your network administrator. The Shell should
now show rendezvous peers when you start the application and run the
rdvstatus command.

Using the JXTA Shell Without a Network Connection

If, for some reason, you don’t have network access, you can still explore JXTA
using the Shell and the experiments in the rest of this book. The Shell applica-
tion is a peer like any other on a JXTA P2P network, so all the standard com-
mands to manipulate peers, peer groups, and pipes will work exactly the same,
independent of the location of the peer. However, you will be able to see,
manipulate, and communicate only with your own peer.

If you want to experiment with the JXTA Shell in a more realistic environ-
ment, you can run two instances of the Shell on the same machine, using one
of the Shell instances as a rendezvous peer. Due to the way the Java reference
implementation of the JXTA platform implements its cache of configuration
information, you need to make a copy of the Shell directory to prevent clashes
between the instances of the Shell:

1. Force the Shell to display the configuration dialog box the next time it
starts using the peerconfig command from within the Shell.

2. Exit the Shell using exit.

Running the JXTA Shell

3. Make a copy of the Shell subdirectory (located underneath the JXTA
installation directory) called Shell2 at the same level as the Shell
subdirectory.

Before attempting to configure each Shell, you should know your machine’s
local IP address.
On Windows, follow these steps:

1. Open a command prompt.
2. Invoke the ipconfig command.
3. Note the IP address specified in the output from ipconfig.
You should also ensure that you can ping your own IP address because some

internal networks might not allow you to see your own IP address. To check if
you can see your own IP address, follow these steps:

1. Open a command prompt.
2. Invoke the ping command.
3. Ensure that the response doesn’t indicate that the destination host is

unreachable.

If you cannot ping the IP address returned by ipconfig, you should use the
localhost IP address 127.0.0.1 instead of the IP address returned by ipconfig.
On other operating systems, consult your operating system’s help system to
learn how to determine your machine’s IP address and ping an IP address.

To start one Shell as a rendezvous peer, open a command prompt and
follow these steps:

1. Go to the shell subdirectory.

2. Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

3. Enter a name for the peer.
4. Go to the Rendezvous/Relays tab.
Remove each TCP and HTTP rendezvous server and each HTTP relay

SCrver.

ot

Deselect Use a Relay in the HTTP Relay Settings section.
Select Act as a Rendezvous.

Go to the Advanced tab.

Deselect Enabled from the HTTP Settings section.

10. Select Enabled and Manual from the TCP Settings section.

X o N o

59

60

Chapter 3

11.

12.
13.

Introducing JXTA P2P Solutions

Select Always Manual, and note the IP address and port number (default
9701) that has been automatically set. If no IP address has been set, enter
the IP address that you obtained from your operating system.

Click OK.

Enter your username and password when prompted, and hit Enter.

To start a second Shell to act as a simple peer using the rendezvous peer that
you just created, open a second command prompt and do the following:

1.
2.

Go the shell2 subdirectory that you created.

Remove the pse subdirectory. This directory contains the personal secu-
rity settings protected by the password entered in the Configurator.

. Remove the PlatformConfig file. This file contains configuration informa-

tion for your peer, and it must be removed to prevent the second
instance from reusing the peer’s unique ID.

Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

. Enter a name for the peer, preferably one that is different from the one

you used for the rendezvous peer.

6. Go to the Rendezvous/Relays tab.
7. Remove each TCP and HTTP rendezvous server and each HTTP relay

SCTVer.

8. Deselect Use a Relay in the HTTP Relay Settings section.

9. Enter the IP address and port that you noted in the first shell as a TCP

10.
11.
12.

13.
14.
15.
16.

Rendezvous, and add it to the list using the + button.
Go to the Advanced tab.
Select Enabled and Manual from the TCP Settings section.

Select Always Manual, and enter your IP address and a different port
number (say, 9702).

Deselect Enabled from the HTTP Settings section.
Go the Security tab.
Enter a username and password.

Click OK.

You now have a simple peer configured to use the first instance of the Shell
as a rendezvous peer, and you can conduct P2P communication between the

two peers as normal.

Navigating the JXTA Shell 61

Navigating the JXTA Shell

The JXTA Shell presents a simple command-line user interface similar to
UNIX’ interface. Simple text commands are entered at the JXTA prompt:

JXTA>

Like most UNIX shells, the Shell is case-sensitive and maintains a history of
previously issued commands. At any time, you can see a complete list of the
previously issued commands by using the history command:

JXTA>history
0 man
1 history

At any time, you can scroll through the commands using the up and down
arrow keys, invoking previous commands without retyping the command.

Learning About Shell Commands

The JXTA Shell resembles a UNIX shell in many ways, and several of the
commands are available within the Shell. To learn what commands are avail-
able from the Shell, you can use the man command by itself to print a list of all
available commands, shown in Table 3.1:

JXTA>man

Table 3.1 Built-In Shell Commands

Command Description

cat Concatenates and displays a Shell object
chpgrp Changes the current peer group

clear Clears the shell’s screen

env Displays environment variable

exit Exits the Shell

exportfile Exports to an external file

get Gets data from a pipe message

grep Searches for matching patterns

groups Discovers peer groups

help Gives instructions on where to find help
history Shows the history of Shell commands executed
importfile Imports an external file

instjar Installs JAR files containing additional Shell commands

continues

62 Chapter 3 Introducing JXTA P2P Solutions

Table 3.1 Continued

Command Description

join Joins a peer group

leave Leaves a peer group

man Online help command that displays information about a
specific Shell command

mkadv Makes an advertisement

mkmsg Makes a pipe message

mkpgrp Creates a new peer group

mkpipe Creates a pipe

more Pages through a Shell object

peerconfig Forces reconfiguration the next time the Shell is started

peerinfo Gets information about peers

peers Discovers peers

put Puts data into a pipe message

rdvserver Runs the peer as a standalone rendezvous server

rdvstatus Displays information about rendezvous

recv Receives a message from a pipe

search Discovers JXTA advertisements

send Sends a message into a pipe

set Sets an environment variable

setenv Sets an environment variable

sftp Sends a file to another peer

share Shares an advertisement

Shell Forks a new JXTA Shell command interpreter

Sql Issues an SQL command (not implemented)

Sqlshell Acts as the JXTA SQL Shell command interpreter

Talk Talks to another peer

Uninstjar Uninstalls JAR files previously installed with instjar

Version Returns the Shell version information

we Counts the number of lines, words, and characters

in an object
who Displays credential information

whoami Displays information about a peer or a peer group

Navigating the JXTA Shell 63

The man command also enables you to learn about the purpose and options for
various commands available within the Shell. For example, to find out more
about the rdvstatus command, use this command:

JXTA>man rdvstatus

This pulls up the usage information for the rdvstatus command, as shown in
Listing 3.5.

Listing 3.5 Usage Information for rdvstatus

NAME
rdvstatus - display information about rendezvous

SYNOPSIS
rdvstatus [-v]
[-v] print verbose information
DESCRIPTION

rdvstatus displays information about the peer
rendezvous. The command shows how many rendezvous peers
the peer is connected to.

OPTIONS
-V print verbose information
EXAMPLE
JXTA>rdvstatus
SEE ALSO

whoami peers

Environment Variables

The Shell provides environment variables to store pieces of information in the
Shell for later use.You can see the defined environment variables using the env
command, as shown in Listing 3.6.

64

Chapter 3 Introducing JXTA P2P Solutions

Listing 3.6 The Shell Environment Variables

JXTA>env

stdin = Default InputPipe (class net.jxta.impl.shell.ShellInputPipe)

SHELL = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

History = History (class net.jxta.impl.shell.bin.history.HistoryQueue)
parentShell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

Shell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

stdout = Default OutputPipe (class net.jxta.impl.pipe.NonBlockingOutputPipe)
consout = Default Console OutputPipe (class
net.jxta.impl.shell.ShellOutputPipe)

consin = Default Console InputPipe (class
net.jxta.impl.shell.ShelllInputPipe)

stdgroup = Default Peer Group (class net.jxta.impl.peergroup.StdPeerGroup)

These environment variables are set by default to handle the input, output, and
basic functionality of the Shell. More variables can be defined by the output of
commands, each corresponding to an object, data, or cached advertisement
accessible within the Shell’s environment.

Importing and Exporting Environment Variables

In addition to working with environment variables within the Shell, environ-
ment variables can be imported and exported using the importfile and
exportfile commands. The commands enable you to import XML or plain
text files into Shell environment variables. By default, the working directory
for these commands is set to the directory where you executed the Shell,
usually the Shell subdirectory of the JXTA installation directory.

To demonstrate the importfile and exportfile commands, follow these steps:

1. Create a text file called input.txt containing some text in the Shell sub-
directory under the JXTA installation directory.

2. Import the text of the file into an environment variable called test using
importfile -f input.txt test.

You should see a new environment variable named test in the list of variables
returned by the env command. Rather than trying to find a variable in the
output of env, you can use the cat command to view the contents of the test
variable, as shown in Listing 3.7:

JXTA>cat test

Navigating the JXTA Shell 65

Listing 3.7 The Imported Environment Variable

<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

The cat command knows how to render several types of environment vari-
ables to the standard output of the Shell, including the XML document
produced by importing input.txt with the importfile command. The test
environment variable can now be exported to a file called output.txt using this
command:

JXTA>exportfile -f output.txt test

A file called output.txt containing the contents of the test variable appears in
the Shell subdirectory of the JXTA installation.

Although the usefulness of this functionality might seem trivial now,
remember that all functionality in JXTA is expressed in terms of XML-based
advertisements. As you’ll see, having the capability to manipulate environment
variables is central to the power of the JXTA Shell as a tool for experimenting
with the JXTA platform.

Combining Commands

In a manner similar to UNIX, the JXTA Shell allows users to string together
simple commands to perform complex functionality. The | operator allows the
output of a command on the left of the operator to be used as input into the
command on the right.

Consider a simple example: The output of the man command is a bit too
long to read without scrolling. The more command breaks a piece of input text
into screen-size chunks.You can combine these two commands by typing the
following:

JXTA>man | more

This pipes the output of the man command as input into the more command,
allowing you to view the man output in screen-size chunks that you can move
between by hitting the Enter key. Similarly, you could count the number of
characters in the man output using this command:

JXTA>man | wc -c

66 Chapter 3 Introducing JXTA P2P Solutions

This pipes the output of the man command as input into the we command,
which counts the number of characters in the input when the -¢ option is set.

Manipulating Peers

The JXTA Shell provides basic capabilities to discover peers and obtain peer
information. Working with a peer involves working with a Peer Advertisement
that describes the peer and its services.

Learning About the Local Peer

Before learning about other peers, you need to know a bit about your own
local peer:

JXTA>whoami

The whoami command returns the peer information for the local peer run by
the JXTA Shell given in Listing 3.8.

Listing 3.8 Results of the whoami Shell Command

<Peer>MyPeer</Peer>

<Keywords>NetPeerGroup by default</Keywords>
<PeerId>urn:jxta:uuid-59616261646162614A78746150325033855A703D4E614D
B7B54A9BE583FFCD4C03</PeerId>
<TransportAddress>tcp://asterix:9701/</TransportAddress>
<TransportAddress>http://JxtaHttpClientuuid-59616261646162614A787461
50325033855A703D4E614DB7B54A9BES83FFCD4C03/</TransportAddress>

This short version of the local peer information shows only the basic peer
information. A longer version that displays the whole Peer Advertisement
stored in environment variable peerX can be viewed using this command:

JXTA>cat peerX

You can find the environment variable holding your Peer Advertisement by
looking for your peer’s name in the results of the peers command.

[won’t go into the details of the Peer Advertisement at this point. I will
provide a complete description of the Peer Advertisement when we explore
the Peer Discovery Protocol in the next chapter. For now, it’s enough to
notice some of the information provided by the advertisement:

» A name for the peer

» A unique identifier for the peer

Manipulating Peers

= Services provided by the peer
» Transport endpoint details
The services provided by the peer are called peer services; these are services

offered only by the peer. If the peer disconnects from the network, these ser-
vices are unavailable to other peers.

Finding Peers

Before your peer can request services from a peer, it needs to know the exis-
tence of the peer, what services the peer offers, and how to contact the peer
on the network. To find peers that your local peer is already aware of, execute
the peers command given in Listing 3.9.

Listing 3.9 Results of the peers Shell Command

JXTA>peers

peer®: name = rdv-235
peeri: name = rdv-237
peer2: name = dI_lab1
peer3: name = dI_lab_Tokyo
peer4: name = MyPeer

Each Peer Advertisement is made available in the Shell environment via a vari-
able with a name of the form peerX, where X is an integer. At this point, your
peer is aware of only local or cached Peer Advertisements for peers that have
already been discovered; no discovery of remote peers has yet been performed.
Caching Peer Advertisements reduces the amount of discovery that a peer
might have to perform and can be used by simple peers as well as rendezvous
peers to reduce network traffic.

Each entry returned by the peers command shows the simple peer name for
a peer and the name of an environment variable storing the Peer Advertise-
ment for that peer. In the previous example, the peer4 environment variable
stores the Peer Advertisement for the local peer.You can view the Peer
Advertisement using the cat command:

JXTA>cat peer4

To discover other peers on the network, you need to send a peer discovery
message using the following:

JXTA>peers -r
peer discovery message sent

67

68

Chapter 3 Introducing JXTA P2P Solutions

This sends a discovery message immediately to all the rendezvous peers that
your peer is aware of on the network. The rendezvous peers forward the
request to other rendezvous and simple peers that it is aware of on the net-
work. The rendezvous peers might potentially reply using cached Peer
Advertisements to improve the response time and reduce network traffic across
the P2P network. The peers command returns to the JXTA prompt immedi-
ately, and the discovered peers can be viewed using the peers command, as
shown in Listing 3.10.

Listing 3.10 The Updated List of Discovered Peers

JXTA>peers

peer@: name = cajunboy
peeri: name = fds
peer2: name = Rdv-235
peer3: name = domehuhu
peer4: name = MyPeer
peer5: name = Rdv-236

The results of the peer discovery might not be immediately viewable with the
peers command. JXTA provides no guarantees about the time required to
receive a response to a discovery message; it is possible that responses might
never return. The delay depends on a variety of factors, including the speed of

your connection to other peers and the network configuration (firewall,
NAT).

Flushing Cached Peer Advertisements

At some point, it might be appropriate to remove the Peer Advertisements
from the local cache, eliminating the local peer’s knowledge of other peers
on the network. To flush the local cache of Peer Advertisements, use this
command:

JXTA>peers -f

The only remaining Peer Advertisement will be that of your own local peer:

JXTA>peers
peer@: name = MyPeer

To find peers on the network, you need to send another peer discovery mes-
sage to the network using the peers -r command to populate the local cache
of Peer Advertisements.

Manipulating Peer Groups

Manipulating Peer Groups

In the same manner that you just managed to discover and manipulate peer
information, you can discover and manipulate peer groups. Working with a
peer group involves working with a Peer Group Advertisement that describes
the peer group and its services.

Learning About the Current Peer Group

The whoami command permits you to examine the peer group information for
the local peer’s current peer group. In the Shell, the peer can manipulate only

one peer group at a time. For convenience, this peer group is set as the current
peer group in an environment variable called stdgroup. To retrieve information
about the current peer group, use whoami -g to obtain the peer group informa-
tion in a form similar to this:

<PeerGroup>NetPeerGroup</PeerGroup>
<Description>NetPeerGroup by default</Description>
<PeerGroupId>urn:jxta:jxta-NetGroup</PeerGroupId>

This peer group information shows that the peer is currently a part of the Net
Peer Group. By default, all peers are members of the Net Peer Group, thereby
allowing all peers on the network to see and communicate with each other.
The peer group information returned by whoami -g is a condensed version
of the information provided by the peer group’s advertisement. A Peer Group
Advertisement also contains information on the set of services that the peer
group makes available to its members. These services are called peer group ser-
vices to distinguish them from peer services. Peer group services can be imple-
mented by several members of a peer group, enabling redundancy. Unlike a
peer service, a peer group service remains available as long as one member of
the peer group is connected to the P2P network and is providing the service.

Finding Peer Groups

In a similar manner to viewing the known peers on the network, you can
view the known peer groups using this command:

JXTA>groups

As with the peers command, only those peer groups that have been discovered
in the past and have had their Peer Group Advertisement cached appear in the
list when this command is executed in an instance of the Shell. Although all
peers belong to the Net Peer Group and this group is always present, the Net
Peer Group does not show up in the results from the groups command.

69

70

Chapter 3 Introducing JXTA P2P Solutions

To find peer groups available on the P2P network, a peer group discovery
request must be made to the network:

JXTA>groups -r
group discovery message sent

Using the groups command again returns a list of groups discovered on the
network:

JXTA>groups
group®: name = SomeGroup
groupt: name = AnotherGroup

As with peer discovery, the response to a group discovery message might not
be immediate, if a response is obtained at all. Each of the cached Peer Group
Advertisements is available in the environment as a variable with a name of
the form groupX, where X is an integer. The contents of the environment vari-
able can be viewed using the cat command:

JXTA>cat group@

This command displays the full Peer Group Advertisement instead of the con-
densed version returned by whoami -g.

Creating a Peer Group

A new peer group can be created from within the JXTA Shell in two ways: by
cloning the Net Peer Group Peer Group Advertisement or by creating a new
Peer Group Advertisement from scratch.

Cloning The Net Peer Group
To create a new peer group, use the mkpgrp command and provide a name for
your peer group:

JXTA>mkpgrp MyGroup

Used this way, the mkpgrp command makes a new peer group by cloning the
existing Net Peer Group peer group.

Creating a New Peer Group Advertisement

Instead of cloning the existing Net Peer Group, you can create a new Peer

Group Advertisement with a given name using this command:
JXTA>MyGroupAdvertisement = mkadv -g <name>

This form of the mkadv command creates a new Peer Group Advertisement by

cloning the current peer group. If you haven’t yet joined any groups, the cur-
rent peer group is the Net Peer Group, and the result is identical to using the

Manipulating Peer Groups

mkpgrp command. Alternatively, you can import a saved Peer Group Advertise-
ment from a text file and use it to create the advertisement:

JXTA>importfile -f advertisement.txt MyDocument
JXTA>MyAdvertisement = mkadv -g -d MyDocument
JXTA>mkpgrp -d MyAdvertisement MyGroup

This set of commands imports a file called advertisement.txt, creates a Peer
Group Advertisement out of its contents, and uses them to create a new peer
group called MyGroup.

Note
Currently, the Shell ignores the MyGroup name for the peer group and uses the name from the Peer
Group Advertisement; this is a known bug with the current Shell implementation.

Joining a Peer Group

When your peer is aware of a peer group, either by creating one or by per-
forming peer group discovery, you must join the group before any communi-
cation as a part of that peer group can occur. To join a group whose Peer
Group Advertisement is stored in an environment variable called group1, use
the join -d command:

JXTA>join -d group1

The join command prompts you for an identity that you want to use on this
group:

Enter the identity you want to use when joining this peergroup (nobody)
Identity:

Identities assign credentials to users for accessing peer resources. The peer
group’s Membership service is responsible for defining accepted identities and
authenticating peers that want to join a group.

The join -d command sets the current peer group in the environment to
the most recently joined peer group. Issuing the join command again lists the
current known groups and their status:

JXTA>join
Unjoined Group : AnotherGroup
Joined Group : MyGroup (current)

Unjoined Group : SomeGroup

If you make another group called MyGroup2 and join it, the current peer group
changes to reflect MyGroup2 as the current peer group:
JXTA>join
Unjoined Group : AnotherGroup

71

72

Chapter 3 Introducing JXTA P2P Solutions

Joined Group : MyGroup
Joined Group 1 MyGroup2 (current)
Unjoined Group : SomeGroup

To move between peer groups, change the current shell peer group by issuing
the chpgrp command, as shown in Listing 3.11.

Listing 3.11 Changing the Current Peer Group

JXTA>chpgrp MyGroup

JXTA>join

Unjoined Group : AnotherGroup

Joined Group : MyGroup (current)
Joined Group : MyGroup2

Unjoined Group : SomeGroup

If you decide to leave a peer group, issue the leave command; your peer will
leave the current peer group, as shown in Listing 3.12.

Listing 3.12 Result of Leaving a Group

JXTA>leave

JXTA>join
Unjoined Group : AnotherGroup
Unjoined Group : MyGroup
Joined Group : MyGroup2
Unjoined Group : SomeGroup

After you leave a peer group, the current peer group is set to the Net Peer
Group.You must issue a chpgrp command to set the current peer group again.

Flushing Cached Peer Group Advertisements

Just as it might be appropriate to remove the Peer Group Advertisements
from the local cache, it might also be appropriate to remove peer group
advertisements from the local cache. To flush the local cache of Peer Group
Advertise-ments, thereby eliminating the local peer’s knowledge of peer
groups on the network, use this command:

JXTA>groups -f

To join a peer group on the network, you need to send another peer group
discovery message to the network using the groups -r command to populate
the local cache of Peer Group Advertisements.

Manipulating Pipes

Manipulating Pipes

Pipes provide the basic mechanism for peers to share information with each
other. Pipes and pipe endpoints are abstractions of the underlying network-
transport mechanism responsible for providing network connectivity.
Communicating with other peers involves discovering pipes and endpoints,
binding to a pipe, and sending and receiving messages through the pipe.

Creating Pipes
To create a pipe, you must first create a Pipe Advertisement:
JXTA>MyPipeAdvertisement = mkadv -p

Using the cat command, you can view the newly created Pipe Advertisement,
as shown in Listing 3.13.

Listing 3.13 Viewing the New Pipe Advertisement

JXTA>cat MyPipeAdvertisement
<?xml version="1.0"?>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-59616261646162614E504720503250339C0C74ADD709

4CEC90EC9D4471DFED5304

</Id>

<Type>JdxtaUnicast</Type>
</jxta:PipeAdvertisement>

When a peer has a Pipe Advertisement, defining a pipe from the Pipe
Advertisement is as simple as using these commands:

JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

This defines an input and an output pipe from the advertisement stored in the
MyPipeAdvertisement environment variable.

Creating a Message

Communication between an input and an output pipe relies on the capability
to form a message object to exchange. If you import a text file into the Shell,
you can package it inside a message:

JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

73

74 Chapter 3 Introducing JXTA P2P Solutions

The last line places the contents of the SomeData variable inside an element
called MmyData, as shown in Listing 3.14.

Listing 3.14 The Newly Created Message

JXTA>cat MyMessage
Tag: MyData

Body:

<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

Sending and Receiving Messages

To demonstrate how simple it is to send a message using a pipe, youre going
to send a message from the peer to itself. To send the message from the peer,
first define the input and output pipes:

JXTA>MyPipeAdvertisement = mkadv -p
JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

Next, import a file that will form the body of the message:
JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

Now send the message:

JXTA>send MyOutputPipe MyMessage

To receive the message from the pipe, use this command:

JXTA>ReceivedMessage = recv -t 5000 MyInputPipe

This command attempts to receive a message from the MyInputPipe input pipe
and store it in the ReceivedMessage variable. The command attempts to receive a
message for only five seconds before timing out.

If the attempt to receive a message is successful, the command returns the
following:

recv has received a message

Talking to Other Peers

The data can be extracted from the received message, as shown in Listing 3.15.

Listing 3.15 Viewing the Received Message Data

JXTA>NewData = get ReceivedMessage MyData
JXTA>cat NewData
<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

If no message is available to be received, the Shell reports the following:

recv has not received any message

The Shell recognizes whether a pipe is not the appropriate type required to
send or receive a message. Attempting to send using an input pipe instead of
an output pipe results in an error:

JXTA>send MyInputPipe MyMessage

send: MyInputPipe is not an OutputPipe

java.lang.ClassCastException: net.jxta.impl.pipe.InputPipeImpl
Similarly, attempting to receive using an output pipe instead of an input pipe
results in an error:

JXTA>inputMessage = recv -t 5000 outputPipe
wait: outputPipe is not an InputPipe
java.lang.ClassCastException: net.jxta.impl.pipe.NonBlockingOutputPipe

Talking to Other Peers

The talk command is a simple application written on top of the JXTA Shell
that allows you to talk to other peers. To do this, first create a talk advertise-
ment for a specific username:

JXTA>talk -register myusername
This has to be done only once as the platform caches the advertisement. Next,
start a talk listener daemon using this command:

JXTA>talk -login myusername

After this, you can talk to another user:

JXTA>talk -u myusername myfriendsusername

75

76 Chapter 3 Introducing JXTA P2P Solutions

This allows you to enter text messages that will be sent to the other talk user
myfriendsusername, as shown in Figure 3.7.You can even send a text message to
yourself using this command:

JXTA>talk -u myusername myusername

[374 Shell - 1 oy] [
JxTh>talk -register Kewin ;I
User : Kewin is now registered

J¥Ta>talk -login Kewvin

I¥Thrtalk: from Toby to Kevin

Message: Hey Kew,

J¥Ta>talk -u Eevin Toby
found user's advertisement attewpting to connect
ralk is connected to user Toby

Type your message. To exit, type "." at begining

of line

-Ioix]
talk: from Toby to Kewin ﬁ
Message: Wanna go for a beerz IXTh>talk -register Toby -~
Sure, I'll meet you at Darby 0'|°°°°°"

User : Toby is now registered

T¥TA>talk -login Toby

J¥Ta>talk -u Toby Kewvin

found user's advertisement attempting to conhect
talk is comnected to user Eevin

Type your message. To exit, type "." at begining
of line

Hey Kew,

talk: from Eewin to Toby

Message: Hey Toby,

Wanna go for a heer?

talk: from Kewin to Toby

Message: Sure, I'll meet you at Darby 0'Gill's in
ten minutes.

ninutes.

=

Figure 3.7 Using talk between two shell instances.

When you’re done talking for the session, use this command to shut down the
talk daemon:

JXTA>talk -logout myusername

Extending the Shell Functionality

The JXTA Shell is designed to be more than just a toy to explore the basic
building blocks of P2P technology. The Shell is designed to allow developers
to extend its functionality easily and incorporate new commands. All the core
commands that you’ve used so far are invoked dynamically, and any new com-
mands that a developer creates will be invoked the same way.

Extending the Shell Functionality 77

A developer needs to follow a few simple rules to create a new command
for the Shell. To work in the Shell properly, a new command must do the
following:

= Extend the net.jxta.impl.shell.ShellApp class

» Implement the startApp and stopApp methods

= Be part of a subpackage of net.jxta.impl.shell.bin

= Exist in a subpackage of the same name as the command

= Be in a class of the same name as the command

A Simple Shell Command

Following these simple rules, you’ll now write a simple command to print the
name of the peer. Listing 3.16 creates a command called helloworld.

Listing 3.16 The helloworld Shell Command (helloworld.java)
package net.jxta.impl.shell.bin.helloworld;

import net.jxta.impl.shell.ShellApp;
import net.jxta.impl.shell.ShellEnv;
import net.jxta.impl.shell.ShellObject;

import net.jxta.peergroup.PeerGroup;

/**

* A simple example command for the JXTA Shell.
*/

public class helloworld extends ShellApp

{

/**

* The shell environment.

*/

private ShellEnv theEnvironment;

/**

* Invoked by the Shell to starts the command.

*

* @param args a set of arguments passed to the command.
* @return a status code indicating the success or failure
* of the command.

*/

continues

78 Chapter 3 Introducing JXTA P2P Solutions

Listing 3.16 Continued

public int startApp(String[] args)

{

/**

println("Starting command...");

// Get the shell's environment.
theEnvironment = getEnv();

// Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup aPeerGroup = (PeerGroup) theShellObject.getObject();

// Check to see if there were any command arguments.
if ((args == null) | (args.length == 0))

{
// Print the peer name to the console.
println("My peer name is " + aPeerGroup.getPeerName());
}
else
{
println("This command doesn't support arguments.");
// Return the 'parameter error' status code.
return ShellApp.appParamerror;
}

// Return the 'no error' status code.
return ShellApp.appNoError;

* Invoked by the Shell to stop the command.

public void stopApp()

{

// Do nothing.

Extending the Shell Functionality

As demanded by the rules of the Shell, the helloworld class is a part of the
net.jxta.impl.shell.bin.helloworld package and implements the startApp and
stopApp methods. In this simple example, the command retrieves an object rep-
resenting the current peer group using the stdgroup environment variable:

ShellObject theShellObject =
theEnvironment.get("stdgroup");

The shellenv object is the same store of environment objects that you've been
working with from inside the Shell throughout this chapter. The PeerGroup
object is retrieved from the wrapper Shellobject returned by ShellEnv:

PeerGroup aPeerGroup =
(PeerGroup) theShellObject.getObject();

Finally, the name of the peer in the peer group is printed to the console using
the Shell’s standard output:

println("My peer name is " +
aPeerGroup.getPeerName());

To make this command work with the Shell, compile the helloworld.java
source from the command line. To make life easier, place the source code in
the shell subdirectory of the JXTA demo installation and compile it using the
following:

javac -d . -classpath ..\lib\jxta.jar;..\lib\jxtashell.jar helloworld.java

Now execute the Shell, making sure to include the current directory in the
classpath:

java -classpath .;..\lib\jxta.jar;..\lib\jxtashell.jar;..\lib\cms.jar;
..\lib\cmsshell.jar;..\lib\log4j.jar;..\lib\beepcore.jar;
..\lib\cryptix32.jar;..\lib\cryptix-asni.jar;..\1lib\jxtaptls.jar;
..\lib\jxtasecurity.jar;. net.jxta.impl.peergroup.Boot

The Shell starts up as usual, and you can now try your new command:

JXTA>helloworld
Starting command...
My peer name is MyPeer

Congratulations, you just created your first solution using JXTA! Although this
example doesn’t do much, it demonstrates how simple it is to build on the
JXTA platform to incorporate new functionality.

79

80 Chapter 3 Introducing JXTA P2P Solutions

Summary

This chapter provided a crash course on using the JXTA Shell. Most of the
details of JXTA, its protocols, and the Java reference implementation are
revealed in the following chapters. In the next chapter, you start examining the
JXTA platform in detail by looking at the Peer Discovery Protocol and its
components. Your familiarity with the JXTA Shell will come in handy by pro-
viding a framework for the examples, thereby reducing the amount of coding
required and allowing the examples to focus on the particulars of peer
discovery.

=T R - A L

10

11

JXTA Protocols

The Peer Discovery Protocol
The Peer Resolver Protocol
The Rendezvous Protocol

The Peer Information Protocol
The Pipe Binding Protocol

The Endpoint Routing Protocol

Peer Groups and Services

Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Discovery Protocol

As DESCRIBED IN CHAPTER 2, “P2P CONCEPTS,” advertisements are the basic
unit of data exchanged between peers to provide information on available
services, peers, peer groups, pipes, and endpoints. With advertisements, the
problem of finding peers and all their different types of resources can be
reduced to a problem of finding advertisements describing those resources.

The Peer Discovery Protocol (PDP) defines a protocol for requesting
advertisements from other peers and responding to other peers’ requests for
advertisements. This chapter describes the format of the messages of the PDP
and tells how to discover advertisements using the Java reference implem-
entation of JXTA.

Introducing the Peer Discovery Protocol

In Chapter 2, you saw that peers discover resources by sending a request to
another peer, usually a rendezvous peer, and receiving responses containing
advertisements describing the available resources on the P2P network.

84 Chapter 4 The Peer Discovery Protocol

The Peer Discovery Protocol consists of only two messages that define the
tollowing:

= A request format to use to discover advertisements
= A response format for responding to a discovery request
These two message formats, the Discovery Query Message and the Discovery

Response Message, define all the elements required to perform a discovery
transaction between two peers, as shown in Figure 4.1.

1. Peer 1 sends a

Discovery Query

Message to all of its

known simple peers and Simple Peer 1

rendezvous peers. 3. Asimple peer receiving

the query searches its local

cache for matching

advertisements. If matches

are found, the peer sends a

i Discovery Response

Simple Peer 2 \essage directly to the peer
responsible for sending the
original query.

Rendezvous Peer

2. Rendezvous peers that
receive the query process
the discovery query and

may return a Discovery

Response Message ,
containing advertisements Simple Peer 3
from its cache. In addition,
the rendezvous peer will

propagate the query to all
of its known peers.

Figure 4.1 Exchange of discovery messages.

Although the messages define a request and a response to that request, it is
important to note that a peer might not expect a Discovery Response
Message 1n response to a given Discovery Query Message. A response to a
request might not be received for a variety of reasons—for example, the
request didn’t generate any results, or the request was ignored by an over-
loaded peer.

The Discovery Query Message

The Discovery Query Message is sent to other peers to find advertisements. It
has a simple format, as shown in Listing 4.1.

Introducing the Peer Discovery Protocol 85

Listing 4.1 The Discovery Query Message XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:DiscoveryQuery>

<Type> . . . </Type>
<Threshold> . . . </Threshold>
<PeerAdv> . . .</PeerAdv>
<Attr> . . . </Attr>

<Value> . . .</Value>

</jxta:DiscoveryQuery>

The root element for the Discovery Query Message is the jxta:DiscoveryQuery
element. Developers familiar with XML might recognize the jxta: prefix in
the root element as an XML namespace specifier and wonder if the jxta
namespace is used or enforced within the Java implementation. Although the
jxta prefix does specify a namespace, the current Java implementation of JXTA
does not understand XML namespaces and treats jxta:DiscoveryQuery as the
element name rather than recognizing DiscoveryQuery as an XML tag from the
jxta namespace.

The elements of the Discovery Query Message describe the discovery para-
meters for the query. Only advertisements that match all the requirements
described by the query’s discovery parameters are returned by a peer. The dis-
covery parameters described by the Discovery Query Message are listed here:

» Type—A required element containing an integer value specifying the type
of advertisement being discovered. A value of @ represents a query for
Peer Advertisements, 1 represents a query for Peer Group Advertisements,
and 2 represents a query for any other type of advertisement.

» Threshold—An optional element containing a number specifying the
maximum number of advertisements that should be sent by a peer
responding to the query.

= PeerAdv—An optional element containing the Peer Advertisement for the
peer making the discovery query. The Peer Advertisement contains details
that uniquely identify the peer on the network to enable another peers
to respond to the query.

» Attr and Value—An optional pair of elements that together specify the
criteria that an advertisement must fulfill to be returned as a response to
this query. Attr specifies the name of an element, and value specifies the
value that the element must have to be returned as a response to the

query.

86 Chapter 4 The Peer Discovery Protocol

A couple special exceptions to these rules apply:

= When the Type is set to 0 (representing a query for Peer Advertisements)
and the threshold is set to 0, the peer sending the Discovery Query
Message is seeking to obtain as many Peer Advertisements as possible. All
peers that receive the query should respond to the query with their Peer
Advertisement.

= When values for the Attr and value elements are absent, each peer
responds with a random set of advertisements of the requested Type, up
to the maximum specified by the Threshold element.

In the Java reference implementation, the Discovery Query Message’s defini-
tion is split into an abstract class definition and a reference implementation
provided by Project JXTA, as shown in Figure 4.2.The purpose of this divi-
sion 1s to allow third-party developers to maintain API compatibility with the
Java reference implementation when providing their own implementation for
message parsing and formatting.

Figure 4.2 The Discovery Query Message classes.

The abstract definition of the Discovery Query Message can be found in the
net.jxta.protocol.DiscoveryQueryMsg class, and the reference implementation of
the abstract class can be found in the net.jxta.impl.protocol.DiscoveryQuery
class.

Introducing the Peer Discovery Protocol

Listing 4.2 provides the shell command to create a Discovery Query
Message using the DiscoveryQuery implementation and prints it to the Shell’s
standard output for examination.

Listing 4.2 Source Code for example4_1.java

package net.jxta.impl.shell.bin.example4 1;

import

import
import

import

import

import

/**

java.io.StringWriter;

net.jxta.document.StructuredTextDocument;
net.jxta.document.MimeMediaType;

net.jxta.discovery.DiscoveryService;

net.jxta.impl.protocol.DiscoveryQuery;

net.jxta.impl.shell.ShellApp;

* A Shell command to create and output a Discovery Query Message.

*/
public
{

class example4_1 extends ShellApp

/**

*

*

*

*

*

*

The implementation of the Shell command, invoked when the command
is started by the user from the Shell.

@param args the command-line arguments passed to the command.
@return a status code indicating the success or failure of
the command.

*
/
public int startApp(String[] args)

{

int result = appNoError;

int type = DiscoveryService.PEER;

String attribute = null;

String value = null;

int threshold = 0;

String advertisementString = "This is my Peer Advertisement";

/] Construct a discovery query message.

continues

87

88

Chapter 4 The Peer Discovery Protocol

Listing 4.2 Continued

DiscoveryQuery query =
new DiscoveryQuery(type, advertisementString, attribute,
value, threshold);

// Create an XML formatted string version of the discovery query.
StringWriter buffer = new StringWriter();
MimeMediaType mimeType = new MimeMediaType("text/xml");
// MimeMediaType mimeType = new MimeMediaType("text/plain");
try
{
StructuredTextDocument document =
(StructuredTextDocument) query.getDocument(mimeType);
document.sendToWriter (buffer);

}
catch (Exception e)
{
e.printStackTrace();
}

// Print out the formatted message.
println(buffer.toString());

return result;

Place the example’s code in a file called example4_1.java in the Shell subdirec-
tory of the JXTA demo installation. Compile the example using this code:

javac -d . -classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asni.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\1lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC.jar example4_1.java

After the example has compiled, run the Shell application using this code:

java -classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asni.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC. jar;.
net.jxta.impl.peergroup.Boot

When the Shell has loaded, run the example using this command:
JXTA>example4_1

The example4_1 command produces the XML-formatted Discovery Query
Message containing the parameters for the discovery, shown in Listing 4.3.

Introducing the Peer Discovery Protocol

Listing 4.3 Output of the example4_1 Shell Command

<?xml version="1.0"?>

<!DOCTYPE jxta:DiscoveryQuery>

<jxta:DiscoveryQuery xmlns:jxta="http://jxta.org">
<Type>
0
</Type>
<Threshold>
0
</Threshold>
<PeerAdv>
This is my Peer Advertisement
</PeerAdv>
</jxta:DiscoveryQuery>

The DiscoveryQuery constructor uses a String representation for the Peer
Advertisement instead of an object, and the String passed to the constructor is
used directly in the output. The Discovery Query Message output produced
by the example isn’t valid because the PeerAdv element doesn’t actually contain
a valid Peer Advertisement. Producing a valid Discovery Query Message using
the DiscoveryQuery class requires the developer to create a Peer Advertisement
object and format it as a String in the same manner that the example uses to
create a String from the query object. This String then set as the contents of
PeerAdv element using DiscoveryQuery’s setPeerAdv method. For now, you’ll avoid
creating the Peer Advertisement object; we’ll focus on it later in this chapter
when advertisement instantiation is explored.

The mechanism for formatting the query object as a String is entirely
abstracted through the net.jxta.document.Document interface. The Document inter-
face defines a generic container for MIME media that can be read from an
InputStream or written to an OutputStream. All advertisement and message
objects used by the Java implementation of JXTA use an implementation of
the StructuredTextDocument interface, derived from the Document interface, to
provide a representation of the class as a structured MIME text document.

Using the StructuredTextDocument interface, the query object in the example
is written out to XML by providing a MimeMediaType object for the text/xml
MIME type to the query object’s getDocument method. Because the formatting
framework is so flexible, the output format could be easily changed to print
plain text instead of XML by changing the following line in the example:

MimeMediaType mimeType = new MimeMediaType("text/xml");

89

90

Chapter 4 The Peer Discovery Protocol

To print plain text, create a MimeMediaType object for the text/plain MIME type
instead of text/xml using the following line:

MimeMediaType mimeType = new MimeMediaType("text/plain");

When this change is in place, recompile the example and restart the Shell
application. Running the example4_1 command this time produces the result
shown in Listing 4.4.

Listing 4.4 Output of the Modified example4_1 Shell Command

jxta:DiscoveryQuery :
Type : 0
Threshold : 0
PeerAdv : This is my Peer Advertisement

The format of the output is determined by the MimeMediaType object passed to
getDocument. The query object’s getDocument method uses this MIME type and
the StructuredDocumentFactory to produce an implementation of the
StructuredDocument interface. The available implementations of
StructuredDocument are defined in the StructuredDocumentInstanceTypes property
of the config.properties property file located in the net.jxta.impl package.
Currently, only two implementations, LiteXMLDocument and PlainTextDocument, are
available, corresponding to the text/xml and text/plain MIME types, respec-
tively. The abstraction of message and advertisement formatting means that the
Java reference implementation could switch easily from XML to another, pos-
sibly binary, format without requiring major changes to the implementation
architecture.

The example demonstrates only how to create a Discovery Query Message,
not how to send it to other peers to perform the actual discovery. An applica-
tion developer never actually needs to formulate a Discovery Query Message
and send it to other peers themselves; in fact, there is no abstract way of
instantiating a DiscoveryQueryMsg implementation in the Java reference imple-
mentation. The DiscoveryQueryMsg is an abstract class defining an interface that
DiscoveryQuery implements. Although a developer can use the DiscoveryQuery
implementation directly, this prevents a developer from using another imple-
mentation without changing all the code. As you’ll see, developers discover
advertisements using the Discovery service instead of using the
DiscoveryQueryMsg class or its implementations directly, thereby abstracting
the developer from a particular implementation of DiscoveryQueryMsg.

Introducing the Peer Discovery Protocol 91

The Discovery Response Message

To reply to a Discovery Query Message, a peer creates a Discovery Response
Message that contains advertisements that match the query’s search criteria,
such as the Attr/value combination or Type of advertisement. The Discovery
Response Message is formatted as shown in Listing 4.5.

Listing 4.5 The Discovery Response Message XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:DiscoveryResponse>

<Type> . . . </Type>
<Count> . . . </Count>
<PeerAdv> . . . </PeerAdv>
<Attr> . . . </Attr>
<Value> . . . </Value>

<Response Expiration="expiration time">

</Response>
</jxta:DiscoveryResponse>

The elements of the Discovery Response Message closely correspond to those
of the Discovery Query Message:

» Type—Similar to the Type element passed in the Discovery Query
Message, the Type element here is a required element containing an
integer value that represents the type of all the advertisements contained
within the Response elements of the message. As before, a value of 0 repre-
sents Peer Advertisements, 1 represents Peer Group Advertisements, and 2
represents all other types of advertisements.

» Count—An optional element containing an integer representing the total
number of Response elements in the message.

= PeerAdv—An optional element containing the Peer Advertisement of the
peer responding to the original Discovery Query Message.

» Attr and Value—An optional pair of elements that together specify the
original search criteria that generated this response. These have the same
value as the Attr and value in the Discovery Query Message; if these ele-
ments were not present in the original query, they are omitted from the
response.

92 Chapter 4 The Peer Discovery Protocol

= Response—An optional element containing an advertisement that
matched the search criteria in the Discovery Query Message. Each
Discovery Response Message can contain multiple Response elements,
each containing one advertisement in response to the original query.
The total number of Response elements equals the value held by the Count
element. The Expiration attribute on the Response elements specifies the
length of time that this advertisement should be considered valid. In
the Java reference implementation, this time is implicitly expressed in
milliseconds.

The abstract definition of the Discovery Response Message is defined in the
net.jxta.protocol.DiscoveryResponseMsg class, shown in Figure 4.3, and the refer-
ence implementation is defined in the net.jxta.impl.protocol.DiscoveryResponse
class.

Figure 4.3 The Discovery Response Message classes.

Unlike with DiscoveryQueryMsg class, a developer uses the DiscoveryResponseMsg
class in conjunction with the Discovery service to process responses to queries.
The DiscoveryResponseMsg class provides developers with an easy mechanism to
extract response advertisements; this is demonstrated in the example in the
next section.

The Discovery Service

The Discovery Service

All the protocols defined by the JXTA Protocols Specification are imple-
mented as services called core services. The core services include the following:

= Discovery

= Pipe

= Endpoint

= Rendezvous

= Peer Info

= Resolver
An instance of a service is associated with a specific peer group. Only peers
that are members of the same peer group are capable of communicating with
each other via their services. By default, all peers belong to a common peer
group, called Net Peer Group, thereby allowing all peers and their advertise-
ments to be discovered.

Services provide developers with a level of abstraction, insulating them

somewhat from the raw message objects used to send information between
peers. The Discovery service provides a mechanism for the following:

» Retrieving remote advertisements
= Retrieving local advertisements
= Publishing advertisements locally
= Publishing advertisements remotely
= Flushing local advertisements
In the Java reference implementation, the Discovery service is defined by the

DiscoveryService interface in net.jxta.discovery and is implemented by the
DiscoveryServiceImpl class in net.jxta.impl.discovery, as shown in Figure 4.4.

)

Figure 4.4 The DiscoveryService interface and implementation.

93

94

Chapter 4 The Peer Discovery Protocol

The DiscoveryService interface provides a simple mechanism for developers
to send discovery queries and process discovery responses. A small set of con-
venience methods allows developers to send Discovery Query Messages
without requiring the developer to create and populate a DiscoveryQuery
object beforehand.

The DiscoveryListener Interface

An application requires some way of being notified of responses to a discovery
query to allow the application to extract advertisements from the response. In
the Java reference implementation, developers can register a listener object that
will be notified by the DiscoveryService when Discovery Response Messages
are received.

Java developers are probably most familiar with the concept of a listener
from the Java Foundation Classes (JEC). In the JFC, a listener interface is
defined for each type of event that can be generated from a user interface
widget, such as a button. An object that wants to be informed when a button
is clicked implements the appropriate listener interface and registers itself with
the button. When the button is clicked, the button widget calls the appropriate
method of each listener implementation instance that has registered with the
widget.

The Java reference implementation uses a similar mechanism to allow
developers to be informed when a new Discovery Response Message is
received by the DiscoveryService. A developer wanting to be notified of the
arrival of a new Discovery Response Message needs to create an implementa-
tion of the DiscoveryListener interface, as shown in Figure 4.5.

<<Interface>>
DiscoveryListener
(from net.jxta.discovery)

- discoveryEvent(event : net.jxta.discovery.DiscoveryEvent) : void

Figure 4.5 The DiscoveryListener interface.

To receive notification, the developer registers the implementation of the
DiscoveryListener interface with an instance of the DiscoveryService using
the addDiscoveryListener method defined in the net.jxta.discovery.Discovery
interface:

public void addDiscoveryListener(
DiscoveryListener listener);

The Discovery Service

Each time the DiscoveryService instance receives a Discovery Response
Message, the listener’s discoveryEvent method is called with an event detailing
the response received by the service.

To stop receiving notifications, the listener object must be removed from
the DiscoveryService using the removeDiscoveryListener method defined in the
net.jxta.discovery.Discovery interface:

public boolean removeDiscoveryListener(
DiscoveryListener listener);

A reference to the original listener object is required to be capable of remov-
ing the listener object from the DiscoveryService instance. The call to the
removeDiscoverylListener returns true if the given listener object is removed
from the DiscoveryService instance, or false if the listener object isn’t currently
registered with the DiscoveryService instance.

The DiscoveryEvent Class

As shown in Figure 4.6, the DiscoveryEvent defined in net.jxta.discovery is
provided to the discoveryEvent method of the DiscoveryListener implementa-
tion to provide details on the Discovery Response Message received by a
DiscoveryService instance.

EventObject
(from java.util)
¢« source : Object

- EventObject(source : Object)
- getSource() : Object
« toString() : String

DiscoveryEvent
(from net.jxta.discovery)

- DiscoveryEvent(source : java.lang.Object, response : net.jxta.protocol.DiscoveryResponseMsg, querylD : int)
- getQueryID() : int
- getResponse() : net.jxta.protocol.DiscoveryResponseMsg

Figure 4.6 The DiscoveryEvent class.

The listener can extract the DiscoveryResponseMsg from the event using the
getResponse method of DiscoveryEvent:

public DiscoveryResponseMsg getResponse()
Use the getResponses method of DiscoveryResponselsg, as shown in Listing 4.6,

to obtain an Enumeration object that can be used to iterate over the advertise-
ments returned in the DiscoveryResponselsg.

95

96 Chapter 4 The Peer Discovery Protocol

Listing 4.6 Extracting Responses from a DiscoveryEvent Object

public void discoveryEvent(DiscoveryEvent event)

{
DiscoveryResponseMsg response = event.getResponse();
Enumeration enum = response.getResponses();

while (enum.hasMoreElements())

{
String advString =
(String) enum.nextElement();

// Extract the advertisement from the string here.

The DiscoveryResponseNsg interface also provides the getExpirations method,
allowing a developer to obtain an Enumeration of the expiration times for each
of the advertisements returned in the response.

Using DiscoveryListener and DiscoveryEvent

To try out handling discovery responses, you’ll create a shell command to
handle registering and unregistering your own DiscoveryListener implementa-
tion. First, you need an implementation of the DiscoveryListener interface, as
shown in Listing 4.7.

Listing 4.7 Source Code for ExampleListener.java

package net.jxta.impl.shell.bin.example4 2;
import java.util.Enumeration;
import net.jxta.document.Advertisement;

import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoverylListener;

import net.jxta.protocol.DiscoveryResponseMsg;

/**

* A simple listener to notify the user when a discovery event has

The Discovery Service

* been received.
*/
public class ExampleListener implements DiscoveryListener
{
/**
* The DiscoverylListener's event method, used for handling
* notification of a received Discovery Response Message from
* the Discovery service.
*
* @param event the event containing the received response.
*/
public void discoveryEvent(DiscoveryEvent event)
{

DiscoveryResponselMsg response = event.getResponse();

System.out.println("Received a response containing
+ response.getResponseCount() + " advertisements");

For this simple example, you don’t need anything fancy—just a notification
that a response has been received and details on the number of advertisements
contained in the response. Next, you need to create a Shell command called
example4_2 to handle registering and unregistering your listener object. This is
shown in Listing 4.8.

Listing 4.8 Source Code for example4_2.java

package net.jxta.impl.shell.bin.example4 2;

import net.jxta.discovery.DiscoveryService;
import net.jxta.discovery.DiscoverylListener;

import net.jxta.peergroup.PeerGroup;
import net.jxta.impl.shell.GetOpt;
import net.jxta.impl.shell.ShellApp;
import net.jxta.impl.shell.ShellEnv;
import net.jxta.impl.shell.ShellObject;

package net.jxta.impl.shell.bin.example4 2;

continues

97

98 Chapter 4 The Peer Discovery Protocol

Listing 4.8 Continued

import net.jxta.discovery.DiscoveryService;
import net.jxta.discovery.DiscoverylListener;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;
import net.jxta.impl.shell.ShellApp;
import net.jxta.impl.shell.ShellEnv;
import net.jxta.impl.shell.ShellObject;

/**
* A simple example shell application to register or unregister a
* DiscoverylListener.
*/

public class example4 2 extends ShellApp

{

/**
* The shell environment holding the store of environment variables.
*/

ShellEnv theEnvironment;

/**
* A flag indicating whether to add or remove the listener.
*/

boolean addListener = true;

/**
* The name used to store the listener in the environment.
*/

String name = "Default";

/**
* Manages adding or removing the listener.
*
* @param discovery the Discovery service to use to manage
* the listener.
*/
private void managelListener(DiscoveryService discovery)

{

The Discovery Service

if (name != null)

{
/] Check if a listener already exists.
ShellObject theShellObject = theEnvironment.get(name);
if (addListener)
{
if (theShellObject == null)
{
/| Create a new listener.
DiscoverylListener listener = new ExamplelListener();
/] Add the listener to the discovery service.
discovery.addDiscoveryListener(listener);
/] Add the listener object to the environment.
theEnvironment.add(name,
new ShellObject(name, listener));
}
}
else
{
if (theShellObject != null)
{
DiscoverylListener listener =
(DiscoveryListener) theShellObject.getObject();
/| Remove the listener from the discovery service.
discovery.removeDiscoveryListener(listener);
/| Remove the listener object from the environment.
theEnvironment.remove (name);
}
}
}
}
/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.
* @exception IllegalArgumentException if an invalid parameter

continues

99

100 Chapter 4 The Peer Discovery Protocol

Listing 4.8 Continued

* is passed.
*/
private void parseArguments(String[] args)
throws IllegalArgumentException

{
int option;
/| Parse the arguments to the command.
GetOpt parser = new GetOpt(args, "rn:");
while ((option = parser.getNextOption()) != -1)
{
switch (option)
{
case 'r'
{
// Remove the listener.
addListener = false;
break;
}
case 'n'
{
/] Get the name used to store the listener object.
String argument= null;
if ((argument = parser.getOptionArg()) != null)
{
name = argument;
}
break;
}
}
}
}
/**

* The implementation of the Shell command, invoked when the command
* is started by the user from the Shell.

*

The Discovery Service

* @param args the command-line arguments passed to the command.
* @return a status code indicating the success or failure of

* the command.

*/
public int startApp(String[] args)
{

int result = appNoError;

/] Get the shell's environment.
theEnvironment = getEnv();

/] Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

/] Get the Discovery service for the current peer group.
DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{
/| Parse the command-line arguments.
parseArguments(args);

}

catch (IllegalArgumentException e)

{
println("Incorrect parameters passed to the command.");
result = ShellApp.appParamError;

}

// Manage the listener to the Discovery service. This
// adds or removes the listener as specified by the
// command-line parameters.

manageListener(discovery);

return result;

By default, the example4_2 command creates a listener, adds it to the current

peer group’s DiscoveryService, and stores the listener in a Shell environment

variable named Default. Storing the listener object is essential; otherwise, the
listener can’t be removed from the DiscoveryService at a later time.

101

102 Chapter 4 The Peer Discovery Protocol

Note

Even if you already configured the Shell in the past, you will be prompted each time you start the
Shell to provide your username and password. When trying out the examples, this can become
annoying. To avoid having to enter your username and password each time, you can pass in your
username and password as system properties to the Java runtime. Use this command to pass in
your username and password as system properties:

java -Dnet.jxta.tls.password=password
-Dnet.jxta.tls.principal=username .

This sets a system property called net.jxta.tls.password to the password value provided after the
equals (=) sign and a system property called net.jxta.tls.principal to the username pro-
vided. When you start the Shell from the command line and include these parameters, the Shell
starts immediately without prompting for your username and password.

Place the source code in the Shell subdirectory of the JXTA installation and
compile it in the same way that you compiled the previous example. Start the
Shell from the command line. After the Shell has loaded, clear the local cache
of Peer Advertisements using this line:

JXTA>peers -f

Register an ExampleListener instance by running the example4_2 command:

JXTA>example4_2

You can check that a shell variable has been created using the variable name
Default by checking the output of the env command. At this point, a
DiscoveryListener has been registered to be notified when Discovery Response
Messages are received by the current peer group’s DiscoveryService. The code
responsible for retrieving the current peer group and the peer group’s
DiscoveryService is shown in Listing 4.9.

Listing 4.9 Obtaining DiscoveryService

// Get the shell's environment.
theEnvironment = getEnv();

// Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.
DiscoveryService discovery = currentGroup.getDiscoveryService();

The Discovery Service

This code retrieves the current peer group’s PeerGroup object from the Shell’s
environment, where it is always stored using the name stdgroup. This object
obtains a reference to the DiscoveryService object that is used by the
manageListener method to either add or remove the listener.

To see the listener in action, send a discovery query using the peers -r
command:

JXTA>peers -r

Every time your peer receives responses to the query, the ExampleListener
object’s discoveryEvent method prints the number of advertisements in the
response message:

Received a response containing 4 advertisements

This output appears not in the Shell itself, but in the standard output of the
command shell used to start the Shell application. Although you could print
the output to the Shell console, it would require delving into the use of pipes,
which isn’t appropriate at this point.

Instead of sending an active discovery query, try using the peers command
to retrieve local Peer Advertisements, and observe the behavior of the
ExampleListener output.You should observe that the ExampleListener never
receives notification of responses to a local discovery query. The
DiscoveryService uses the local cache to provide immediate responses to a call
to send a local discovery query; therefore, registered listeners never receive a
notification of a response to a local discovery query.

The example4_2 command takes two optional parameters, -r and -n. The -r
option indicates to the command that the listener object should be removed
from the DiscoveryService, and the -n option indicates the name of the variable
storing the listener instance. For example, issuing the following line attempts
to retrieve a DiscoveryListener object from an environment variable named
MyListener and remove the retrieved listener object from the DiscoveryService
instance:

JXTA>example4_2 -r -nMyListener

The arguments to the example4_2 command are parsed easily using the GetOpt
object in the example:

GetOpt parser = new GetOpt(args, "rn:");
The second argument to the GetOpt constructor, called the format string, speci-

fies the command’s options and whether the option has any arguments. If a
character is followed by the : (colon) character, that option requires an

103

104 Chapter 4 The Peer Discovery Protocol

argument; if it is followed by the ; (semicolon), the option has an optional
argument. This functionality will be used again in later examples.

At this point, you know how to receive notification of a response to discov-
ery query but not how to send the actual discovery query itself. The next sec-
tion provides an example of how to send a discovery query to a remote peer
using the DiscoveryService.

Finding Remote Advertisements

Rather than force developers to create a DiscoveryQueryMsg instance themselves,
the DiscoveryService interface provides an easy way for developers to send a
Discovery Query Message to other peers using the getRemoteAdvertisements
method:

public int getRemoteAdvertisements (String peerid,
int type, String attribute, String value,
int threshold, DiscoverylListener listener);

Each parameter passed to getRemoteAdvertisements corresponds to a field in the
Discovery Query Message, with the exception of the peerid and listener para-
meters. The peerid parameter is a parameter that uniquely identifies the peer to
query for advertisements; if this parameter is null, the message is sent to all
peers on the local network and is propagated via available rendezvous peers.
More information on identifiers is provided in the section ‘“Working with
Advertisements” later in this chapter.

The listener parameter provides a DiscoverylListener object that is called
only when responses arrive in response to this particular call to
getRemoteAdvertisements. Providing a listener object provides a way to receive
notification without registering a listener with the DiscoveryService. Registered
listeners are notified of incoming responses regardless of whether a null or
non-null listener is passed to getRemoteAdvertisements.

To try out the getRemoteAdvertisements method, the following example shell
command shown in Listing 4.10 allows a user to send remote queries and
specify the desired advertisement type and maximum responses.

Listing 4.10 Source Code for example4_3.java

package net.jxta.impl.shell.bin.example4_3;
import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

import

import
import
import
import

/**

net.jxta.

net.jxta

net.jxta

The Discovery Service

peergroup.PeerGroup;

.impl.shell.GetOpt;
net.jxta.
net.jxta.
.impl.shell.ShellObject;

impl.shell.ShellApp;
impl.shell.ShellEnv;

* A simple example shell application to enable a user to send remote
* discovery queries using the current peer group's Discovery service.

*/

public class example4_3 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to peer

* advertisements.

*/
private int type = DiscoveryService.PEER;

/**

* The maximum number of responses requested.
*/
private int threshold = 10;

/**

* The Discovery service being used to discover advertisements.
*/
private DiscoveryService discovery = null;

/**

* Parses the command-line arguments and initializes the command

*

*

*

*

*/

@param

args the arguments to be parsed.

@exception IllegalArgumentException if an invalid parameter

is passed.

private void parseArguments(String[] args)
throws IllegalArgumentException

int option;

continues

105

106 Chapter 4 The Peer Discovery Protocol

Listing 4.10 Continued

/| Parse the arguments to the command.
GetOpt parser = new GetOpt(args, "a:t:");

while ((option = parser.getNextOption()) != -1)
{
switch (option)
{
case 'a’
{
/| Set the type of advertisement to discover.
type = Integer.parselnt(parser.getOptionArg());
// Validate the type.
if ((type < @) |; (type > 2))
{
/| Default to the peer type.
type = DiscoveryService.PEER;
}
break;
}
case 't'
{
String argument = null;
if ((argument = parser.getOptionArg()) != null)
{
/| Set the threshold.
threshold = Integer.parselnt(argument);
}
break;
}
}
}
}
[H

* Send a discovery request to remote peers via the Discovery service.

*

*

*

*

*/

The Discovery Service

@param type the type of advertisement to discover.
@param threshold the maximum number of advertisements to be
returned by any single peer.

private void sendRemoteDiscovery(int type, int threshold)

{

/**

*

*

*

*

*

*

*/

discovery.getRemoteAdvertisements(null, type, null, null,
threshold, null);

The implementation of the Shell command, invoked when the command
is started by the user from the Shell.

@param args the command-line arguments passed to the command.
@return a status code indicating the success or failure of
the command.

public int startApp(String[] args)

{

int result = appNoError;

/| Get the shell's environment.
ShellEnv theEnvironment = getEnv();

/] Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

/] Get the Discovery service for the current peer group.
discovery = currentGroup.getDiscoveryService();

try

{
/| Parse the command-line arguments.
parseArguments(args);

}

catch (IllegalArgumentException e)

{
println("Incorrect parameters passed to the command.");
result = ShellApp.appParamError;

}

continues

107

108 Chapter 4 The Peer Discovery Protocol

Listing 4.10 Continued

// Send a remote discovery request.
sendRemoteDiscovery(type, threshold);

return result;

The example is essentially a replacement for the peers -r command. When run
in conjunction with example4_2, it allows a user to send queries and be notified
when responses arrive.

To see the example4_3 command in action, first register a listener using the
example4 2 command:

JXTA>example4 2

Then send a Discovery Query Message that searches for Peer Advertisements,
with a maximum of 10 responses from any given peer:

JXTA>example4 3

The peer sends a Discovery Query Message to all known peers requesting a
response containing matching advertisements. The ExampleListener registered
using the example4_2 command prints information each time that a response to
this query is received by the DiscoveryService instance.

Finding Cached Advertisements

In the Java reference implementation, advertisements in responses to a
Discovery Query Message are automatically added to a local cache of adver-
tisements. DiscoveryListener implementations don’t have to provide caching
functionality themselves.

To find advertisements using the local cache, a developer can use the
getLocalAdvertisements method of the DiscoveryService interface. Unlike per-
forming an active discovery to find advertisements on remote peers, perform-
ing discovery using the local cache returns results immediately and does not
require an implementation of the DiscoveryListener interface.

To see how local discovery works, Listing 4.11 shows another example Shell
command that replaces some of the functionality of the peers command.

Listing 4.11

Source Code for example4_4.java

The Discovery Service

package net.jxta.impl.shell.bin.example4 4;

import java.io.IOException;

import
import
import
import
import
import

import
import

/**

java.util.Enumeration;

net.jxta.discovery.DiscoveryService;

net.

net.

net.
net.
net.
net.

jxta.

jxta.

jxta.
jxta.
jxta.
jxta.

document.Advertisement;

peergroup.PeerGroup;

impl.shell.GetOpt;
impl.shell.ShellApp;
impl.shell.ShellEnv;
impl.shell.ShellObject;

* A simple example shell application to enable a user to send local
* discovery queries using the current peer group's Discovery service.

*/

public class example4_4 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to

* peer advertisements.
*/
private int type = DiscoveryService.PEER;

/**

* The Discovery service being used to discover advertisements.
*/
private DiscoveryService discovery = null;

/**

* The name of the element to match.
*/
private String attribute = null;

continues

109

110 Chapter 4 The Peer Discovery Protocol

Listing 4.11 Continued

/**
* The value to match for the element specified by the attribute
* variable.
*/

private String value = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter
* is passed.

*/

private void parseArguments(String[] args)
throws IllegalArgumentException

int option;

// Parse the arguments to the command.
GetOpt parser = new GetOpt(args, "a:k:v:");

while ((option = parser.getNextOption()) != -1)
{
switch (option)
{
case 'a’
{

/] Set the type of advertisement to discover.
type = Integer.parselnt(parser.getOptionArg());

/] Validate the type.
if ((type < @) |; (type > 2))

{
// Default to the peer type.
type = DiscoveryService.PEER;
}
break;

The Discovery Service

case 'k'

{
/| Set the attribute to match.
attribute = parser.getOptionArg();

break;
}
case 'v'
{
/| Set the value for the attribute being matched.
value = parser.getOptionArg();
break;
}

// Both attribute and value must be specified.
if (!((null != attribute) && (null != value)))

{
// Set both to null.
attribute = null;
value = null;
}
}
/**

* Sends a local discovery request using the Discovery service.
*/
private void se